論文の概要: Partially Observable Online Change Detection via Smooth-Sparse
Decomposition
- arxiv url: http://arxiv.org/abs/2009.10645v1
- Date: Tue, 22 Sep 2020 16:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 22:07:44.706740
- Title: Partially Observable Online Change Detection via Smooth-Sparse
Decomposition
- Title(参考訳): smooth-sparse decomposition による部分観測可能なオンライン変更検出
- Authors: Jie Guo, Hao Yan, Chen Zhang, Steven Hoi
- Abstract要約: 本研究は,センサ容量の制限により,各センシング時点におけるデータストリームのサブセットのみを観測できる,疎度な変化を伴う高次元データストリームのオンライン変化検出について考察する。
一方、検出方式は、部分的に観測可能なデータを扱うことができ、一方、スパース変化に対する効率的な検出能力を有するべきである。
本稿では,CDSSDと呼ばれる新しい検出手法を提案する。特にスムーズな分解によるスムーズな変化を伴う高次元データの構造について述べる。
- 参考スコア(独自算出の注目度): 16.8028358824706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider online change detection of high dimensional data streams with
sparse changes, where only a subset of data streams can be observed at each
sensing time point due to limited sensing capacities. On the one hand, the
detection scheme should be able to deal with partially observable data and
meanwhile have efficient detection power for sparse changes. On the other, the
scheme should be able to adaptively and actively select the most important
variables to observe to maximize the detection power. To address these two
points, in this paper, we propose a novel detection scheme called CDSSD. In
particular, it describes the structure of high dimensional data with sparse
changes by smooth-sparse decomposition, whose parameters can be learned via
spike-slab variational Bayesian inference. Then the posterior Bayes factor,
which incorporates the learned parameters and sparse change information, is
formulated as a detection statistic. Finally, by formulating the statistic as
the reward of a combinatorial multi-armed bandit problem, an adaptive sampling
strategy based on Thompson sampling is proposed. The efficacy and applicability
of our method in practice are demonstrated with numerical studies and a real
case study.
- Abstract(参考訳): センサ容量の制限により,各センシング時点においてデータストリームのサブセットのみを観測できる,スパースな変化を伴う高次元データストリームのオンライン変更検出について検討する。
一方、検出スキームは部分的に観測可能なデータを扱うことができ、一方、ばらばらな変更に対する効率的な検出能力を持つべきである。
一方、このスキームは、検出力を最大化するために観察すべき最も重要な変数を適応的かつ積極的に選択できるべきである。
そこで本稿では,この2点に対処するため,cdssdと呼ばれる新しい検出方式を提案する。
特に、滑らかなスパース分解によるスパース変化を伴う高次元データの構造を記述し、そのパラメータはスパイク・スラブ変分ベイズ推論によって学習できる。
そして、学習パラメータとスパース変化情報を組み込んだ後部ベイズ係数を検出統計として定式化する。
最後に,組合せ多腕バンディット問題の報奨として統計式を定式化し,トンプソンサンプリングに基づく適応サンプリング戦略を提案する。
本手法の有効性と適用性は数値的研究と実例研究で実証された。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
逐次変化点検出のための状態空間モデル(AUCRSS)を用いたアダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
SSMのオンライン推論のために部分的に観測可能なカルマンフィルタアルゴリズムを開発し、一般化された確率比テストに基づく変化点検出スキームを解析する。
論文 参考訳(メタデータ) (2024-03-30T02:32:53Z) - Online Change Points Detection for Linear Dynamical Systems with Finite
Sample Guarantees [1.6026317505839445]
本研究では,未知の力学を持つ線形力学系に対するオンライン変化点検出問題について検討する。
我々は,誤報を発生させる確率に基づいて,予め指定された上限を達成できるデータ依存しきい値を開発する。
論文 参考訳(メタデータ) (2023-11-30T18:08:16Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - High dimensional change-point detection: a complete graph approach [0.0]
低次元から高次元のオンラインデータから平均と分散の変化を検出するための完全なグラフベース変化点検出アルゴリズムを提案する。
グラフ構造に着想を得て,高次元データをメトリクスにマッピングするグラフスパンニング比を導入する。
提案手法は,小型かつ複数個のスキャニングウィンドウで高い検出能力を有し,オンライン環境における変化点のタイムリーな検出を可能にする。
論文 参考訳(メタデータ) (2022-03-16T15:59:20Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
すべてのセンサの継続的な監視は、リソースの制約のためにコストがかかる可能性がある。
有限パラメータ化確率分布の一般クラスに対する検出遅延に基づく情報理論の下界を導出する。
本稿では,異なる検知オプションの探索と質問行動の活用をシームレスに両立させる,計算効率のよいオンラインセンシング手法を提案する。
論文 参考訳(メタデータ) (2021-07-22T07:25:35Z) - Online Structural Change-point Detection of High-dimensional Streaming
Data via Dynamic Sparse Subspace Learning [9.050841801109332]
本研究では,高次元ストリーミングデータのオンライン構造変化点検出のための動的スパース部分空間学習手法を提案する。
新たな構造変化点モデルを提案し, 推定器の特性について検討した。
オンライン最適化と変更点検出のために,効率的なPruned Exact Linear Timeベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-24T14:16:18Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z) - High-dimensional, multiscale online changepoint detection [7.502070498889449]
ガウス的データストリームが平均的に変更されるような設定において,高次元のオンライン変更点検出のための新しい手法を提案する。
このアルゴリズムは、新しい観測におけるストレージ要件と最悪の計算複雑性の両方が、以前の観測数とは無関係であるという意味で、オンラインである。
Rパッケージ 'ocd' に実装した提案手法の有効性をシミュレーションにより検証し,その有効性を地震学データセット上で実証する。
論文 参考訳(メタデータ) (2020-03-07T21:54:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。