AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search
- URL: http://arxiv.org/abs/2009.10680v2
- Date: Sun, 27 Sep 2020 02:37:03 GMT
- Title: AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search
- Authors: Wei Zhu, Xipeng Qiu, Yuan Ni and Guotong Xie
- Abstract summary: BERT based relation classification (RC) models have achieved significant improvements over the traditional deep learning models.
No consensus can be reached on what is the optimal architecture.
We design a comprehensive search space for BERT based RC models and employ neural architecture search (NAS) method to automatically discover the design choices.
- Score: 50.349407334562045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although BERT based relation classification (RC) models have achieved
significant improvements over the traditional deep learning models, it seems
that no consensus can be reached on what is the optimal architecture. Firstly,
there are multiple alternatives for entity span identification. Second, there
are a collection of pooling operations to aggregate the representations of
entities and contexts into fixed length vectors. Third, it is difficult to
manually decide which feature vectors, including their interactions, are
beneficial for classifying the relation types. In this work, we design a
comprehensive search space for BERT based RC models and employ neural
architecture search (NAS) method to automatically discover the design choices
mentioned above. Experiments on seven benchmark RC tasks show that our method
is efficient and effective in finding better architectures than the baseline
BERT based RC model. Ablation study demonstrates the necessity of our search
space design and the effectiveness of our search method.
Related papers
- ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Efficient and Joint Hyperparameter and Architecture Search for
Collaborative Filtering [31.25094171513831]
We propose a two-stage search algorithm for Collaborative Filtering models.
In the first stage, we leverage knowledge from subsampled datasets to reduce evaluation costs.
In the second stage, we efficiently fine-tune top candidate models on the whole dataset.
arXiv Detail & Related papers (2023-07-12T10:56:25Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
We propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures.
We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS.
Experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks.
arXiv Detail & Related papers (2021-07-15T16:46:01Z) - One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking [97.60915598958968]
We propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges.
For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking.
For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes.
arXiv Detail & Related papers (2021-04-01T16:29:49Z) - NASE: Learning Knowledge Graph Embedding for Link Prediction via Neural
Architecture Search [9.634626241415916]
Link prediction is the task of predicting missing connections between entities in the knowledge graph (KG)
Previous work has tried to use Automated Machine Learning (AutoML) to search for the best model for a given dataset.
We propose a novel Neural Architecture Search (NAS) framework for the link prediction task.
arXiv Detail & Related papers (2020-08-18T03:34:09Z) - Deep-n-Cheap: An Automated Search Framework for Low Complexity Deep
Learning [3.479254848034425]
We present Deep-n-Cheap -- an open-source AutoML framework to search for deep learning models.
Our framework is targeted for deployment on both benchmark and custom datasets.
Deep-n-Cheap includes a user-customizable complexity penalty which trades off performance with training time or number of parameters.
arXiv Detail & Related papers (2020-03-27T13:00:21Z) - AutoSTR: Efficient Backbone Search for Scene Text Recognition [80.7290173000068]
Scene text recognition (STR) is very challenging due to the diversity of text instances and the complexity of scenes.
We propose automated STR (AutoSTR) to search data-dependent backbones to boost text recognition performance.
Experiments demonstrate that, by searching data-dependent backbones, AutoSTR can outperform the state-of-the-art approaches on standard benchmarks.
arXiv Detail & Related papers (2020-03-14T06:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.