Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
- URL: http://arxiv.org/abs/2506.02426v2
- Date: Wed, 04 Jun 2025 14:21:02 GMT
- Title: Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
- Authors: Maryam Berijanian, Kuldeep Singh, Amin Sehati,
- Abstract summary: In this study, we conduct a comparative analysis of three distinct AI agent architectures to perform relation classification.<n>The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism.<n>Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting.
- Score: 1.6887793771613606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at https://github.com/maryambrj/ALIEN.git.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research [32.92036657863354]
Language agents powered by large language models (LLMs) have demonstrated remarkable capabilities in understanding, reasoning, and executing complex tasks.<n>However, developing robust agents presents significant challenges: substantial engineering overhead, lack of standardized components, and insufficient evaluation frameworks for fair comparison.<n>We introduce Agent Graph-based Orchestration for Reasoning and Assessment (AGORA), a flexible and abstraction framework that addresses these challenges.
arXiv Detail & Related papers (2025-05-30T08:46:23Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAG is a novel Hierarchical Multi-agent Multimodal RAG framework.<n>It pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data.
arXiv Detail & Related papers (2025-04-13T06:55:33Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - CAISSON: Concept-Augmented Inference Suite of Self-Organizing Neural Networks [0.0]
We present CAISSON, a novel hierarchical approach to Retrieval-Augmented Generation (RAG)<n>At its core, CAISSON leverages dual Self-Organizing Maps (SOMs) to create complementary organizational views of the document space.<n>To evaluate CAISSON, we develop SynFAQA, a framework for generating synthetic financial analyst notes and question-answer pairs.
arXiv Detail & Related papers (2024-12-03T21:00:10Z) - AgentRE: An Agent-Based Framework for Navigating Complex Information Landscapes in Relation Extraction [10.65417796726349]
relation extraction (RE) in complex scenarios faces challenges such as diverse relation types and ambiguous relations between entities within a single sentence.
We propose an agent-based RE framework, namely AgentRE, which fully leverages the potential of large language models to achieve RE in complex scenarios.
arXiv Detail & Related papers (2024-09-03T12:53:05Z) - Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition [9.506482334842293]
Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task.<n>Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task.<n>We propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels.
arXiv Detail & Related papers (2024-07-17T05:42:43Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search [50.349407334562045]
BERT based relation classification (RC) models have achieved significant improvements over the traditional deep learning models.
No consensus can be reached on what is the optimal architecture.
We design a comprehensive search space for BERT based RC models and employ neural architecture search (NAS) method to automatically discover the design choices.
arXiv Detail & Related papers (2020-09-22T16:55:49Z) - Relational-Grid-World: A Novel Relational Reasoning Environment and An
Agent Model for Relational Information Extraction [0.0]
Reinforcement learning (RL) agents are often designed specifically for a particular problem and they generally have uninterpretable working processes.
Statistical methods-based RL algorithms can be improved in terms of generalizability and interpretability using symbolic Artificial Intelligence (AI) tools such as logic programming.
We present a model-free RL architecture that is supported with explicit relational representations of the environmental objects.
arXiv Detail & Related papers (2020-07-12T11:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.