論文の概要: Model-Centric and Data-Centric Aspects of Active Learning for Neural
Network Models
- arxiv url: http://arxiv.org/abs/2009.10835v2
- Date: Thu, 8 Oct 2020 22:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 21:21:48.361166
- Title: Model-Centric and Data-Centric Aspects of Active Learning for Neural
Network Models
- Title(参考訳): ニューラルネットワークモデルにおけるアクティブラーニングのモデル中心とデータ中心
- Authors: John Daniel Boss\'er, Erik S\"orstadius, Morteza Haghir Chehreghani
- Abstract要約: ニューラルネットワークモデルを用いたアクティブラーニングにおける,データ中心およびモデル中心のさまざまな側面について検討する。
我々は、例えば、活発に学習した授業で統計分析を行い、テストエラー推定を行い、アクティブな学習に関するいくつかの洞察を明らかにした。
- 参考スコア(独自算出の注目度): 4.125187280299247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study different data-centric and model-centric aspects of active learning
with neural network models. i) We investigate incremental and cumulative
training modes that specify how the currently labeled data are used for
training. ii) Neural networks are models with a large capacity. Thus, we study
how active learning depends on the number of epochs and neurons as well as the
choice of batch size. iii) We analyze in detail the behavior of query
strategies and their corresponding informativeness measures and accordingly
propose more efficient querying and active learning paradigms. iv) We perform
statistical analyses, e.g., on actively learned classes and test error
estimation, that reveal several insights about active learning.
- Abstract(参考訳): ニューラルネットワークモデルを用いたアクティブラーニングにおけるデータ中心とモデル中心の異なる側面について検討する。
i)現在ラベル付きデータがどのようにトレーニングに使われているかを指定するインクリメンタルおよび累積トレーニングモードについて検討する。
二 ニューラルネットワークは、大容量のモデルである。
そこで本研究では,活動学習がエポック数やニューロン数およびバッチサイズの選択に依存するかを検討した。
三 問合せ戦略の挙動とそれに対応する情報性尺度を詳細に分析し、より効率的な問合せ及びアクティブラーニングパラダイムを提案する。
iv)アクティブラーニングに関するいくつかの洞察を明らかにするために,アクティブラーニングクラスやテストエラー推定などの統計的分析を行う。
関連論文リスト
- Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation [3.2340528215722553]
連続的なニューラル情報検索の系統的なタスク定式化を示す。
包括的連続神経情報検索フレームワークを提案する。
経験的評価は,提案フレームワークが神経情報検索における破滅的な忘れ込みを効果的に防止できることを示唆している。
論文 参考訳(メタデータ) (2023-08-16T14:01:25Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
本稿では,ラベル効率向上のための新しい能動的学習手法を提案する。
提案手法は反復的であり,多様性,表現性,不確実性の基準を混合した制約対象関数の最小化を目的としている。
また、強化学習に基づく新たな重み付け機構を導入し、各トレーニングイテレーションでこれらの基準を適応的にバランスさせる。
論文 参考訳(メタデータ) (2022-12-09T14:17:45Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z) - Identifying Learning Rules From Neural Network Observables [26.96375335939315]
学習ルールの異なるクラスは、重み、アクティベーション、即時的な階層的活動変化の集計統計に基づいてのみ分離可能であることを示す。
本研究は, シナプス後活動の電気生理学的記録から得られる活性化パターンが, 学習規則の同定に有効であることを示すものである。
論文 参考訳(メタデータ) (2020-10-22T14:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。