論文の概要: Exploring Deep Learning Models for EEG Neural Decoding
- arxiv url: http://arxiv.org/abs/2503.16567v1
- Date: Thu, 20 Mar 2025 08:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:09.683290
- Title: Exploring Deep Learning Models for EEG Neural Decoding
- Title(参考訳): 脳波ニューラルデコーディングのための深層学習モデルの検討
- Authors: Laurits Dixen, Stefan Heinrich, Paolo Burelli,
- Abstract要約: THINGSイニシアチブは46人の被験者による大規模な脳波データセットを提供する。
近年のディープラーニングモデルを用いて,高レベルのオブジェクト特徴を復号化するための本手法の有効性を検証した。
線形モデルでは復号処理が解けず,ディープラーニングモデルはほぼすべて成功していることを示す。
- 参考スコア(独自算出の注目度): 2.0099933815960256
- License:
- Abstract: Neural decoding is an important method in cognitive neuroscience that aims to decode brain representations from recorded neural activity using a multivariate machine learning model. The THINGS initiative provides a large EEG dataset of 46 subjects watching rapidly shown images. Here, we test the feasibility of using this method for decoding high-level object features using recent deep learning models. We create a derivative dataset from this of living vs non-living entities test 15 different deep learning models with 5 different architectures and compare to a SOTA linear model. We show that the linear model is not able to solve the decoding task, while almost all the deep learning models are successful, suggesting that in some cases non-linear models are needed to decode neural representations. We also run a comparative study of the models' performance on individual object categories, and suggest how artificial neural networks can be used to study brain activity.
- Abstract(参考訳): ニューラルデコーディングは認知神経科学において重要な手法であり、多変量機械学習モデルを用いて記録された神経活動から脳表現をデコードすることを目的としている。
THINGSイニシアチブは46人の被験者による大規模なEEGデータセットを提供し、高速に表示される画像を見ている。
本稿では,近年のディープラーニングモデルを用いて,高レベルのオブジェクト特徴を復号化するための本手法の有効性を検証する。
5つの異なるアーキテクチャを持つ15の異なるディープラーニングモデルをテストし、SOTA線形モデルと比較する。
線形モデルはデコード処理を解くことができないが、ディープラーニングモデルはほとんどが成功しており、場合によっては神経表現をデコードするために非線形モデルが必要であることを示唆する。
また、個々の対象カテゴリにおけるモデルの性能の比較研究を行い、人工ニューラルネットワークを用いて脳の活動を研究する方法について提案する。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
本研究では,海馬と前頭前皮質にインスパイアされた生物工学的メタラーニングモデルを提案する。
我々の新しいモデルはスパイクベースのニューロモーフィックデバイスに容易に適用でき、ニューロモーフィックハードウェアにおける高速な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-07T13:08:46Z) - LowDINO -- A Low Parameter Self Supervised Learning Model [0.0]
本研究は,小規模ネットワークが巨大ネットワークの特性を活用可能なニューラルネットワークアーキテクチャの設計の可能性を検討することを目的とする。
これまでの研究では、畳み込みニューラルネットワーク(ConvNet)を使用することで、固有の帰納バイアスが得られることが示されている。
パラメータの数を減らすために、MobileViTブロックを使用してアテンションメカニズムを利用する。
論文 参考訳(メタデータ) (2023-05-28T18:34:59Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。