論文の概要: Scene Graph to Image Generation with Contextualized Object Layout
Refinement
- arxiv url: http://arxiv.org/abs/2009.10939v4
- Date: Mon, 10 Oct 2022 20:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 16:21:21.469288
- Title: Scene Graph to Image Generation with Contextualized Object Layout
Refinement
- Title(参考訳): コンテキスト化されたオブジェクトレイアウトリファインメントによるシーングラフと画像生成
- Authors: Maor Ivgi, Yaniv Benny, Avichai Ben-David, Jonathan Berant, and Lior
Wolf
- Abstract要約: シーングラフから画像を生成する新しい手法を提案する。
提案手法では,レイアウトのカバレッジを約20ポイント向上し,オブジェクトの重複量を無視できる量に削減する。
- 参考スコア(独自算出の注目度): 92.85331019618332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating images from scene graphs is a challenging task that attracted
substantial interest recently. Prior works have approached this task by
generating an intermediate layout description of the target image. However, the
representation of each object in the layout was generated independently, which
resulted in high overlap, low coverage, and an overall blurry layout. We
propose a novel method that alleviates these issues by generating the entire
layout description gradually to improve inter-object dependency. We empirically
show on the COCO-STUFF dataset that our approach improves the quality of both
the intermediate layout and the final image. Our approach improves the layout
coverage by almost 20 points and drops object overlap to negligible amounts.
- Abstract(参考訳): シーングラフから画像を生成することは、最近大きな関心を集めている課題である。
以前の作業では、対象画像の中間レイアウト記述を生成することで、この課題にアプローチしている。
しかし、レイアウト内の各オブジェクトの表現は独立して生成され、高いオーバーラップ、低いカバレッジ、全体的なぼやけたレイアウトとなった。
本稿では,オブジェクト間の依存性を改善するために,レイアウト記述全体を徐々に生成することにより,これらの問題を緩和する新しい手法を提案する。
我々はCOCO-STUFFデータセットに対して,中間配置と最終画像の両方の品質向上を実証的に示す。
我々のアプローチはレイアウトのカバレッジを20ポイント近く改善し、オブジェクトの重なりを無視できる量に落とします。
関連論文リスト
- LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。
提案手法は,フォトリアリスティックなレイアウトと画像生成の観点から,最先端のモデルよりも優れている。
論文 参考訳(メタデータ) (2023-08-09T17:45:04Z) - Geometry Aligned Variational Transformer for Image-conditioned Layout
Generation [38.747175229902396]
画像中の様々なレイアウトを自動回帰的に生成するICVT(Image-Conditioned Variational Transformer)を提案する。
まず、レイアウト要素内のコンテキスト関係をモデル化するために自己認識機構を採用し、一方、クロスアテンション機構は条件付き画像の視覚情報を融合するために使用される。
広告ポスターレイアウト設計データセットを大規模に構築し,微妙なレイアウトと鮮度マップアノテーションを付加する。
論文 参考訳(メタデータ) (2022-09-02T07:19:12Z) - Iterative Scene Graph Generation [55.893695946885174]
シーングラフ生成は、オブジェクトエンティティとその対応する相互作用述語を所定の画像(またはビデオ)で識別する。
シーングラフ生成への既存のアプローチは、推定イテレーションの実現を可能にするために、関節分布の特定の因子化を前提としている。
本稿では,この制限に対処する新しいフレームワークを提案するとともに,画像に動的条件付けを導入する。
論文 参考訳(メタデータ) (2022-07-27T10:37:29Z) - Scenes and Surroundings: Scene Graph Generation using Relation
Transformer [13.146732454123326]
この研究は、リレーショナルトランスと呼ばれる新しいローカルコンテキスト対応アーキテクチャを提案する。
階層的マルチヘッドアテンションに基づくアプローチは、オブジェクト間のコンテキスト依存を効率的に捕捉し、それらの関係を予測する。
最先端のアプローチと比較して、私たちは全体として、textbf4.85%の改善を達成しました。
論文 参考訳(メタデータ) (2021-07-12T14:22:20Z) - Segmentation-grounded Scene Graph Generation [47.34166260639392]
ピクセルレベルセグメンテーションに基づくシーングラフ生成のためのフレームワークを提案する。
私たちのフレームワークは、基盤となるシーングラフ生成方法に無知です。
ターゲットデータセットと補助データセットの両方でマルチタスクで学習される。
論文 参考訳(メタデータ) (2021-04-29T08:54:08Z) - Semantic Layout Manipulation with High-Resolution Sparse Attention [106.59650698907953]
本稿では,意味ラベルマップを編集して入力画像を操作するセマンティックイメージレイアウト操作の課題に対処する。
このタスクの中核的な問題は、視覚的にイメージを現実的にしながら、入力画像から新しいセマンティックレイアウトに視覚的な詳細を転送する方法です。
512×512の解像度で視覚的詳細を新しいレイアウトに効果的に転送する高分解能スパースアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2020-12-14T06:50:43Z) - Perspective Plane Program Induction from a Single Image [85.28956922100305]
本研究では,自然画像の全体像を推定する逆グラフ問題について検討する。
我々は、この問題を、入力画像の最もよく記述されたカメラポーズとシーン構造を共同で発見するものとして定式化する。
提案するフレームワークであるP3Iは,探索に基づくアルゴリズムと勾配に基づくアルゴリズムを組み合わせて効率よく問題を解く。
論文 参考訳(メタデータ) (2020-06-25T21:18:58Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。