Quantum Assisted Eigensolver
- URL: http://arxiv.org/abs/2009.11001v2
- Date: Mon, 12 Oct 2020 12:33:05 GMT
- Title: Quantum Assisted Eigensolver
- Authors: Kishor Bharti
- Abstract summary: We propose a hybrid quantum-classical algorithm for approxing the ground state and ground state energy of a Hamiltonian.
The output from the quantum part of the algorithm is utilized as input for the classical computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hybrid quantum-classical algorithm for approximating the ground
state and ground state energy of a Hamiltonian. Once the Ansatz has been
decided, the quantum part of the algorithm involves the calculation of two
overlap matrices. The output from the quantum part of the algorithm is utilized
as input for the classical computer. The classical part of the algorithm is a
quadratically constrained quadratic program with a single quadratic equality
constraint. Unlike the variational quantum eigensolver algorithm, our algorithm
does not have any classical-quantum feedback loop. Using convex relaxation
techniques, we provide an efficiently computable lower bound to the classical
optimization program. Furthermore, using results from Bar-On et al. (Journal of
Optimization Theory and Applications, 82(2):379--386, 1994), we provide a
sufficient condition for a local minimum to be a global minimum. A solver can
use such a condition as a stopping criterion.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Interior Point Methods for Semidefinite Optimization [0.16874375111244327]
We present two quantum interior point methods for semidefinite optimization problems.
The first scheme computes an inexact search direction and is not guaranteed to explore only feasible points.
The second scheme uses a nullspace representation of the Newton linear system to ensure feasibility even with inexact search directions.
arXiv Detail & Related papers (2021-12-11T16:52:25Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.