Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms
- URL: http://arxiv.org/abs/2101.07813v1
- Date: Tue, 19 Jan 2021 19:00:40 GMT
- Title: Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms
- Authors: Gian Giacomo Guerreschi
- Abstract summary: We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quadratic Unconstrained Binary Optimization (QUBO) is a broad class of
optimization problems with many practical applications. To solve its hard
instances in an exact way, known classical algorithms require exponential time
and several approximate methods have been devised to reduce such cost. With the
growing maturity of quantum computing, quantum algorithms have been proposed to
speed up the solution by using either quantum annealers or universal quantum
computers. Here we apply the divide-and-conquer approach to reduce the original
problem to a collection of smaller problems whose solutions can be assembled to
form a single Polynomial Binary Unconstrained Optimization instance with fewer
variables. This technique can be applied to any QUBO instance and leads to
either an all-classical or a hybrid quantum-classical approach. When quantum
heuristics like the Quantum Approximate Optimization Algorithm (QAOA) are used,
our proposal leads to a double advantage: a substantial reduction of quantum
resources, specifically an average of ~42% fewer qubits to solve MaxCut on
random 3-regular graphs, together with an improvement in the quality of the
approximate solutions reached.
Related papers
- Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming [0.0]
In this work, we integrate the potentials of quantum and classical techniques for optimization.
We reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size.
We present numerous computational results from real quantum hardware.
arXiv Detail & Related papers (2023-02-10T20:12:53Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
We explore a natural approach to leveraging existing classical techniques to enhance quantum optimization.
Specifically, we run a classical algorithm to find an approximate solution and then use a quantum circuit to search its "neighborhood" for higher-quality solutions.
We demonstrate the applications of CBQOA to Max 3SAT and Max Bisection, and provide empirical evidence that it outperforms previous approaches on these problems.
arXiv Detail & Related papers (2022-03-25T23:36:14Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Assisted Eigensolver [0.0]
We propose a hybrid quantum-classical algorithm for approxing the ground state and ground state energy of a Hamiltonian.
The output from the quantum part of the algorithm is utilized as input for the classical computer.
arXiv Detail & Related papers (2020-09-23T08:33:18Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.