論文の概要: Recurrent Neural Network Controllers for Signal Temporal Logic
Specifications Subject to Safety Constraints
- arxiv url: http://arxiv.org/abs/2009.11468v1
- Date: Thu, 24 Sep 2020 03:34:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 05:24:07.816517
- Title: Recurrent Neural Network Controllers for Signal Temporal Logic
Specifications Subject to Safety Constraints
- Title(参考訳): 安全制約を考慮した信号時間論理仕様の繰り返しニューラルネットワーク制御
- Authors: Wenliang Liu, Noushin Mehdipour, Calin Belta
- Abstract要約: 本稿では,離散時間システムの最適制御戦略を決定するために,リカレントニューラルネットワーク(RNN)に基づくフレームワークを提案する。
RNNは時間の経過とともにシステムの情報を格納できるので、信号時相論理式で規定される動的時間的要求の満足度を決定することができる。
- 参考スコア(独自算出の注目度): 0.2320417845168326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework based on Recurrent Neural Networks (RNNs) to determine
an optimal control strategy for a discrete-time system that is required to
satisfy specifications given as Signal Temporal Logic (STL) formulae. RNNs can
store information of a system over time, thus, enable us to determine
satisfaction of the dynamic temporal requirements specified in STL formulae.
Given a STL formula, a dataset of satisfying system executions and
corresponding control policies, we can use RNNs to predict a control policy at
each time based on the current and previous states of system. We use Control
Barrier Functions (CBFs) to guarantee the safety of the predicted control
policy. We validate our theoretical formulation and demonstrate its performance
in an optimal control problem subject to partially unknown safety constraints
through simulations.
- Abstract(参考訳): 本稿では,STL(Signal Temporal Logic)の仕様を満たすために必要な離散時間システムの最適制御戦略を決定するために,リカレントニューラルネットワーク(RNN)に基づくフレームワークを提案する。
RNNは時間とともにシステムの情報を格納できるので、STL式で指定された動的時間的要求の満足度を決定することができる。
stl公式、システム実行と対応する制御ポリシーを満たすデータセットが与えられると、rnnを使用して、システムの現状と前の状態に基づいて、各時点の制御ポリシーを予測することができる。
制御障壁関数 (cbfs) を用いて, 予測制御ポリシーの安全性を保証する。
シミュレーションにより, 一部未知の安全性制約を受ける最適制御問題において, 理論定式化の有効性を検証し, その性能を示す。
関連論文リスト
- Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
最適合成アルゴリズムは、証明された状態の数を4倍以上に増やすことができることを示す。
このアルゴリズムは、平均的な到達回避確率を3倍以上に向上させることができる。
論文 参考訳(メタデータ) (2023-10-03T10:52:21Z) - Signal Temporal Logic Neural Predictive Control [15.540490027770621]
本稿では,信号時相論理(STL)に規定される要件を満たすためにニューラルネットワークコントローラを学習する手法を提案する。
我々のコントローラは、トレーニングにおけるSTLロバストネススコアを最大化するために軌道のロールアウトを学習する。
バックアップポリシは、コントローラがフェールした場合の安全性を保証するように設計されています。
論文 参考訳(メタデータ) (2023-09-10T20:31:25Z) - Learning Robust and Correct Controllers from Signal Temporal Logic
Specifications Using BarrierNet [5.809331819510702]
我々は,STL定量的セマンティクスを利用して,ロバスト満足度の概念を定義した。
本研究では,STLのフラグメント内の式を満足させる訓練可能な高次制御バリア関数(HOCBF)を構築する。
我々は、他のニューラルネットワークパラメータとともにHOCBFをトレーニングし、コントローラの堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2023-04-12T21:12:15Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control [37.10638636086814]
完全分散無線制御システム(WNCS)の周波数チャネル数に制限のある結合アップリンクとダウンリンクのスケジューリング問題を考える。
深層強化学習(DRL)に基づくフレームワークを開発した。
DRLにおける大きなアクション空間の課題に対処するために,新しいアクション空間削減法とアクション埋め込み法を提案する。
論文 参考訳(メタデータ) (2021-09-26T11:27:12Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
我々は、BNNモデルの軌道が与えられた状態に到達する確率に対して、安全でない状態の集合を避けながら低い境界を計算する。
我々は、制御と強化学習の文脈において、下限を用いて、与えられた制御ポリシーの安全性保証を提供する。
論文 参考訳(メタデータ) (2021-05-21T05:23:57Z) - Model-Based Safe Policy Search from Signal Temporal Logic Specifications
Using Recurrent Neural Networks [1.005130974691351]
本稿では,STL (Signal Temporal Logic) の仕様からコントローラを学習するためのポリシー探索手法を提案する。
システムモデルは未知であり、制御ポリシとともに学習される。
その結果,本手法は非常に少ないシステム実行で所定の仕様を満たせることが明らかとなり,オンライン制御に活用できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-03-29T20:21:55Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
本稿では,レキシックなDeep Reinforcement Learning(DeepRL)に基づく確率制約マルコフ決定プロセスを提案する。
有名なDeepRLアルゴリズムDQNの辞書版も提案され、シミュレーションによって検証されている。
論文 参考訳(メタデータ) (2020-10-19T13:09:14Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。