Transfer Learning by Cascaded Network to identify and classify lung
nodules for cancer detection
- URL: http://arxiv.org/abs/2009.11587v1
- Date: Thu, 24 Sep 2020 10:35:46 GMT
- Title: Transfer Learning by Cascaded Network to identify and classify lung
nodules for cancer detection
- Authors: Shah B. Shrey, Lukman Hakim, Muthusubash Kavitha, Hae Won Kim, Takio
Kurita
- Abstract summary: Existing deep learning architecture for lung nodule identification used complex architecture with large number of parameters.
This study developed a cascaded architecture which can accurately segment and classify the benign or malignant lung nodules on computed tomography (CT) images.
- Score: 3.5068701342301547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung cancer is one of the most deadly diseases in the world. Detecting such
tumors at an early stage can be a tedious task. Existing deep learning
architecture for lung nodule identification used complex architecture with
large number of parameters. This study developed a cascaded architecture which
can accurately segment and classify the benign or malignant lung nodules on
computed tomography (CT) images. The main contribution of this study is to
introduce a segmentation network where the first stage trained on a public data
set can help to recognize the images which included a nodule from any data set
by means of transfer learning. And the segmentation of a nodule improves the
second stage to classify the nodules into benign and malignant. The proposed
architecture outperformed the conventional methods with an area under curve
value of 95.67\%. The experimental results showed that the classification
accuracy of 97.96\% of our proposed architecture outperformed other simple and
complex architectures in classifying lung nodules for lung cancer detection.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
This study was to identify the nodule that were developing in the lungs of the participants.
One-stage detector YOLOv5 trained on 280 CT SCAN from a public dataset LIDC-IDRI based on segmented pulmonary nodules.
arXiv Detail & Related papers (2022-12-31T17:31:22Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - ProCAN: Progressive Growing Channel Attentive Non-Local Network for Lung
Nodule Classification [0.0]
Lung cancer classification in screening computed tomography (CT) scans is one of the most crucial tasks for early detection of this disease.
Several deep learning based models have been proposed recently to classify lung nodules as malignant or benign.
We propose a new Progressive Growing Channel Attentive Non-Local (ProCAN) network for lung nodule classification.
arXiv Detail & Related papers (2020-10-29T08:42:11Z) - Experimenting with Convolutional Neural Network Architectures for the
automatic characterization of Solitary Pulmonary Nodules' malignancy rating [0.0]
Early and automatic diagnosis of Solitary Pulmonary Nodules (SPN) in Computer Tomography (CT) chest scans can provide early treatment as well as doctor liberation from time-consuming procedures.
In this study, we consider the problem of diagnostic classification between benign and malignant lung nodules in CT images derived from a PET/CT scanner.
More specifically, we intend to develop experimental Convolutional Neural Network (CNN) architectures and conduct experiments, by tuning their parameters, to investigate their behavior, and to define the optimal setup for the accurate classification.
arXiv Detail & Related papers (2020-03-15T11:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.