RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images
- URL: http://arxiv.org/abs/2211.00313v5
- Date: Sat, 17 Aug 2024 14:59:56 GMT
- Title: RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images
- Authors: Guang Li, Ren Togo, Takahiro Ogawa, Miki Haseyama,
- Abstract summary: We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
- Score: 49.24576562557866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images. Our method adopts a new masking strategy that utilizes organ mask information to identify valid regions for learning more meaningful representations. We conduct quantitative evaluations on an open lung X-ray image dataset as well as masking ratio hyperparameter studies. When using the entire training set, RGMIM outperformed other comparable methods, achieving a 0.962 lung disease detection accuracy. Specifically, RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods. RGMIM can mask more valid regions, facilitating the learning of discriminative representations and the subsequent high-accuracy lung disease detection. RGMIM outperforms other state-of-the-art self-supervised learning methods in experiments, particularly when limited training data is used.
Related papers
- MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICX is an approach to capture rich representations in the form of embeddings from chest X-ray images.
We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning.
arXiv Detail & Related papers (2024-03-18T06:19:37Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification [0.9883261192383611]
We propose a self-supervised method, DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based on a vision transformer for chest X-ray classification.
A comparative analysis is performed to show the effectiveness of the proposed method for both pneumonia and COVID-19 detection.
arXiv Detail & Related papers (2023-08-01T11:58:49Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
We formulate the self- and report-completion as two complementary objectives and present a unified framework based on masked record modeling (MRM)
MRM reconstructs masked image patches and masked report tokens following a multi-task scheme to learn knowledge-enhanced semantic representations.
Specifically, we find that MRM offers superior performance in label-efficient fine-tuning.
arXiv Detail & Related papers (2023-01-30T18:33:32Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
This study was to identify the nodule that were developing in the lungs of the participants.
One-stage detector YOLOv5 trained on 280 CT SCAN from a public dataset LIDC-IDRI based on segmented pulmonary nodules.
arXiv Detail & Related papers (2022-12-31T17:31:22Z) - COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
We propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images.
We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection.
arXiv Detail & Related papers (2022-12-19T07:10:51Z) - BMD-GAN: Bone mineral density estimation using x-ray image decomposition
into projections of bone-segmented quantitative computed tomography using
hierarchical learning [1.8762753243053634]
We propose an approach using the QCT for training a generative adversarial network (GAN) and decomposing an x-ray image into a projection of bone-segmented QCT.
The evaluation of 200 patients with osteoarthritis using the proposed method demonstrated a Pearson correlation coefficient of 0.888 between the predicted and ground truth.
arXiv Detail & Related papers (2022-07-07T10:33:12Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.