MRANet: A Modified Residual Attention Networks for Lung and Colon Cancer Classification
- URL: http://arxiv.org/abs/2412.17700v1
- Date: Mon, 23 Dec 2024 16:31:45 GMT
- Title: MRANet: A Modified Residual Attention Networks for Lung and Colon Cancer Classification
- Authors: Diponkor Bala, S M Rakib Ul Karim, Rownak Ara Rasul,
- Abstract summary: Lung and colon cancers are predominant contributors to cancer mortality.
By utilizing imaging technology in different image detection, learning models have shown promise in automating cancer classification.
We proposed a novel approach based on a modified residual attention network architecture.
Our proposed model achieved an exceptional accuracy of 99.30%, 96.63%, and 97.56% for two, three, and five classes, respectively.
- Score: 0.0
- License:
- Abstract: Lung and colon cancers are predominant contributors to cancer mortality. Early and accurate diagnosis is crucial for effective treatment. By utilizing imaging technology in different image detection, learning models have shown promise in automating cancer classification from histopathological images. This includes the histopathological diagnosis, an important factor in cancer type identification. This research focuses on creating a high-efficiency deep-learning model for identifying lung and colon cancer from histopathological images. We proposed a novel approach based on a modified residual attention network architecture. The model was trained on a dataset of 25,000 high-resolution histopathological images across several classes. Our proposed model achieved an exceptional accuracy of 99.30%, 96.63%, and 97.56% for two, three, and five classes, respectively; those are outperforming other state-of-the-art architectures. This study presents a highly accurate deep learning model for lung and colon cancer classification. The superior performance of our proposed model addresses a critical need in medical AI applications.
Related papers
- A Knowledge-enhanced Pathology Vision-language Foundation Model for Cancer Diagnosis [58.85247337449624]
We propose a knowledge-enhanced vision-language pre-training approach that integrates disease knowledge into the alignment within hierarchical semantic groups.
KEEP achieves state-of-the-art performance in zero-shot cancer diagnostic tasks.
arXiv Detail & Related papers (2024-12-17T17:45:21Z) - Leveraging Medical Foundation Model Features in Graph Neural Network-Based Retrieval of Breast Histopathology Images [1.48419209885019]
We propose a novel attention-based adversarially regularized variational graph autoencoder model for breast histological image retrieval.
Our top-performing model, trained with UNI features, achieved average mAP/mMV scores of 96.7%/91.5% and 97.6%/94.2% for the BreakHis and BACH datasets, respectively.
arXiv Detail & Related papers (2024-05-07T11:24:37Z) - MultiNet with Transformers: A Model for Cancer Diagnosis Using Images [8.686667049158476]
We provide unique deep neural network designs for multiclass classification of medical images.
We incorporated transformers into a multiclass framework to take advantage of data-gathering capability and perform more accurate classifications.
arXiv Detail & Related papers (2023-01-21T20:53:57Z) - Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models [0.0]
Hematoxylin and Eosin are considered the gold standard for cancer diagnoses.
Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images.
The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution.
arXiv Detail & Related papers (2022-07-03T13:56:44Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Transfer Learning by Cascaded Network to identify and classify lung
nodules for cancer detection [3.5068701342301547]
Existing deep learning architecture for lung nodule identification used complex architecture with large number of parameters.
This study developed a cascaded architecture which can accurately segment and classify the benign or malignant lung nodules on computed tomography (CT) images.
arXiv Detail & Related papers (2020-09-24T10:35:46Z) - Convolution Neural Networks for diagnosing colon and lung cancer
histopathological images [0.0]
The aim of the present research is to propose a computer aided diagnosis system for diagnosing squamous cell carcinomas and adenocarcinomas of lung as well as adenocarcinomas of colon using convolutional neural networks.
A total of 2500 digital images were acquired from LC25000 dataset containing 5000 images for each class.
The diagnostic accuracy of more than 97% and 96% was recorded for lung and colon respectively.
arXiv Detail & Related papers (2020-09-08T17:36:24Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.