論文の概要: A Variational Auto-Encoder for Reservoir Monitoring
- arxiv url: http://arxiv.org/abs/2009.11693v2
- Date: Fri, 2 Oct 2020 10:13:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 15:53:50.073124
- Title: A Variational Auto-Encoder for Reservoir Monitoring
- Title(参考訳): 貯留層モニタリングのための変分オートエンコーダ
- Authors: Kristian Gundersen, Seyyed A. Hosseini, Anna Oleynik, Guttorm Alendal
- Abstract要約: 二酸化炭素キャプチャー・アンド・ストレージ(CCS)は、人為的CO$の排出を緩和する重要な戦略である。
本稿では,AZMI(Above Zone Monitoring Interval)井の圧力データに基づいて,圧力場を再構築し,記憶層のフラックスを分類する深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Carbon dioxide Capture and Storage (CCS) is an important strategy in
mitigating anthropogenic CO$_2$ emissions. In order for CCS to be successful,
large quantities of CO$_2$ must be stored and the storage site conformance must
be monitored. Here we present a deep learning method to reconstruct pressure
fields and classify the flux out of the storage formation based on the pressure
data from Above Zone Monitoring Interval (AZMI) wells. The deep learning method
is a version of a semi conditional variational auto-encoder tailored to solve
two tasks: reconstruction of an incremental pressure field and leakage rate
classification. The method, predictions and associated uncertainty estimates
are illustrated on the synthetic data from a high-fidelity heterogeneous 2D
numerical reservoir model, which was used to simulate subsurface CO$_2$
movement and pressure changes in the AZMI due to a CO$_2$ leakage.
- Abstract(参考訳): 二酸化炭素キャプチャー・アンド・ストレージ(CCS)は、人為的CO$2$排出を緩和する重要な戦略である。
CCSが成功するためには、大量のCO$_2$を保管し、ストレージサイトの適合性を監視する必要がある。
本稿では,上層域監視区間(azmi)井戸からの圧力データに基づいて,圧力場を再構成し,貯蔵層のフラックスを分類する深層学習法を提案する。
深層学習法は、インクリメンタルな圧力場の再構築と漏洩率分類という2つの課題を解くために設計された半条件変分自動エンコーダのバージョンである。
本手法は,co$_2$リークによるazmiの地下co$_2$移動と圧力変化をシミュレートした高忠実性不均一な2次元数値貯留層モデルから得られた合成データから,推定値,予測値および不確実性推定値を示す。
関連論文リスト
- COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
ダイナスタイルのモデルベース強化学習には、ポリシー学習と実環境探索のためのサンプルを生成するモデルロールアウトという2つのフェーズが含まれる。
$textttCOPlanner$は、不正確な学習された動的モデル問題に対処するモデルベースのメソッドのための計画駆動フレームワークである。
論文 参考訳(メタデータ) (2023-10-11T06:10:07Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
そこで本稿では,スパーク計測による地場再構成のためのセンサ配置の最適化について提案する。
本研究では, (a) 温度と (b) バレンツ海周辺の塩分濃度場とスバルバルド諸島群を例に示す。
得られた最適センサ位置は, 物理的解釈が明確であり, 海流の境界に対応することが判明した。
論文 参考訳(メタデータ) (2022-06-28T12:43:38Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Deep Learning-Accelerated 3D Carbon Storage Reservoir Pressure
Forecasting Based on Data Assimilation Using Surface Displacement from InSAR [0.0]
InSAR(Interferometric Synthetic-Aperture Radar)データをモニタリングデータとして使用して,貯水池圧力の上昇を予測することを提案する。
InSARから解釈された表面変位マップを同化するための深層学習促進ワークフローを開発する。
このワークフローは、パーソナルコンピュータ上で30分でデータ同化と貯水圧予測を完了させることができる。
論文 参考訳(メタデータ) (2022-01-21T05:17:08Z) - A Robust Deep Learning Workflow to Predict Multiphase Flow Behavior
during Geological CO2 Sequestration Injection and Post-Injection Periods [1.4050836886292868]
本研究は, 地中CO2採取作業における水圧とCO2配管の時空間的変化を予測できる深層学習ワークフローの開発と評価に寄与する。
論文 参考訳(メタデータ) (2021-07-15T12:01:29Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
本稿では,多孔質中流挙動の物理的理解を深層学習技術で活用し,高速な履歴マッチング・貯留層応答予測ワークフローを開発することを提案する。
マルチウェルインジェクション下での動的圧力とCO2配管幅を予測するための代理モデルを開発した。
このワークフローは、メインストリームの個人ワークステーションで1時間以内で、履歴マッチングと不確実な定量化による貯蓄予測を完了させることができる。
論文 参考訳(メタデータ) (2021-05-09T16:38:29Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
3次元リカレントr-u-netモデルは、深い畳み込みとリカレントニューラルネットワークを組み合わせて、飽和、圧力、表面変位場の空間分布と時間変化を捉える。
サーロゲートモデルは、貯留層内の3D CO2飽和と圧力場、および地球の表面の2D変位マップを予測するために訓練されています。
論文 参考訳(メタデータ) (2021-05-04T07:34:15Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
本稿では,データラベリングプロセスから学習することで,RGB-D値検出の不確実性を利用した最初のフレームワークを提案する。
そこで本研究では,確率的RGB-Dサリエンシ検出を実現するために,サリエンシデータラベリングプロセスにインスパイアされた生成アーキテクチャを提案する。
6つの挑戦的RGB-Dベンチマークデータセットの結果から,サリエンシマップの分布を学習する際のアプローチの優れた性能が示された。
論文 参考訳(メタデータ) (2020-09-07T13:01:45Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
深部SVDDにおける超球崩壊を防止するための2つの正則化器を提案する。
第1の正則化器は、標準のクロスエントロピー損失によるランダムノイズの注入に基づいている。
第2の正規化器は、小さすぎるとミニバッチ分散をペナライズする。
論文 参考訳(メタデータ) (2020-01-24T03:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。