Integrability of $1D$ Lindbladians from operator-space fragmentation
- URL: http://arxiv.org/abs/2009.11745v2
- Date: Tue, 8 Dec 2020 16:47:57 GMT
- Title: Integrability of $1D$ Lindbladians from operator-space fragmentation
- Authors: Fabian H. L. Essler, Lorenzo Piroli
- Abstract summary: We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems.
We show that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimension.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce families of one-dimensional Lindblad equations describing open
many-particle quantum systems that are exactly solvable in the following sense:
$(i)$ the space of operators splits into exponentially many (in system size)
subspaces that are left invariant under the dissipative evolution; $(ii)$ the
time evolution of the density matrix on each invariant subspace is described by
an integrable Hamiltonian. The prototypical example is the quantum version of
the asymmetric simple exclusion process (ASEP) which we analyze in some detail.
We show that in each invariant subspace the dynamics is described in terms of
an integrable spin-1/2 XXZ Heisenberg chain with either open or twisted
boundary conditions. We further demonstrate that Lindbladians featuring
integrable operator-space fragmentation can be found in spin chains with
arbitrary local physical dimension.
Related papers
- Completeness Relation in Renormalized Quantum Systems [0.0]
We show that the completeness relation for the eigenvectors, which is an essential assumption of quantum mechanics, remains true if the initial Hamiltonian, having a discrete spectrum, is modified by a delta potential.
The formulation can be easily extended to $N$ center case, and the case where delta interaction is supported on curves in the plane or space.
arXiv Detail & Related papers (2024-09-09T07:09:16Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Solution of the v-representability problem on a one-dimensional torus [0.0]
We provide a solution to the v-representability problem for a non-relativistic quantum many-particle system on a ring domain.
Importantly, this allows for a well-defined Kohn-Sham procedure but, on the other hand, invalidates the usual proof of the Hohenberg-Kohn theorem.
arXiv Detail & Related papers (2023-12-12T12:41:10Z) - Integral Quantization for the Discrete Cylinder [0.456877715768796]
We show how to derive corresponding covariant integral quantizations from (weight) functions on the phase space.
We also look at the specific cases of coherent states built from shifted gaussians, Von Mises, Poisson, and Fej'er kernels.
arXiv Detail & Related papers (2022-08-19T21:23:43Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Exact-WKB, complete resurgent structure, and mixed anomaly in quantum
mechanics on $S^1$ [0.0]
We investigate the exact-WKB analysis for quantum mechanics in a periodic potential.
We describe the Stokes graphs of a general potential problem as a network of Airy-type or degenerate Weber-type building blocks.
arXiv Detail & Related papers (2021-03-11T10:32:12Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.