Solution of the v-representability problem on a one-dimensional torus
- URL: http://arxiv.org/abs/2312.07225v2
- Date: Tue, 05 Nov 2024 15:25:04 GMT
- Title: Solution of the v-representability problem on a one-dimensional torus
- Authors: Sarina M. Sutter, Markus Penz, Michael Ruggenthaler, Robert van Leeuwen, Klaas J. H. Giesbertz,
- Abstract summary: We provide a solution to the v-representability problem for a non-relativistic quantum many-particle system on a ring domain.
Importantly, this allows for a well-defined Kohn-Sham procedure but, on the other hand, invalidates the usual proof of the Hohenberg-Kohn theorem.
- Score: 0.0
- License:
- Abstract: We provide a solution to the v-representability problem for a non-relativistic quantum many-particle system on a ring domain in terms of Sobolev spaces and their duals. Any one-particle density that is square-integrable, has a square-integrable weak derivative, and is gapped away from zero can be realized from the solution of a many-particle Schr\"odinger equation, with or without interactions, by choosing a corresponding external potential. This potential can contain a distributional contribution but still gives rise to a self-adjoint Hamiltonian. Importantly, this allows for a well-defined Kohn-Sham procedure but, on the other hand, invalidates the usual proof of the Hohenberg-Kohn theorem.
Related papers
- Exact solvability of the Gross-Pitaevskii equation for bound states subjected to general potentials [0.0]
We show that the Gross-Pitaevskii (GP) equation can be mapped to a first-order non-autonomous dynamical system.
For the benefit of the reader, we comment on the difference between the integrability of a quantum system and the solvability of the wave equation.
arXiv Detail & Related papers (2025-02-10T03:12:56Z) - v-representability and Hohenberg-Kohn theorem for non-interacting Schrödinger operators with distributional potentials in the one-dimensional torus [0.0]
We show that the ground-state density of any non-interacting Schr"odinger operator on the one-dimensional torus with potentials in a certain class of distributions is strictly positive.
In particular, the density-to-potential Kohn-Sham map is single-valued, and the non-interacting functional is differentiable at every point in this space of $v$-representable densities.
arXiv Detail & Related papers (2025-01-23T09:57:42Z) - Analogue black string in a quantum harmonic oscillator [49.1574468325115]
We write the exact solution of the Klein-Gordon equation in the background of a chargeless, static black string.
The eigenvalue problem provides complex energy values for the particle, which may indicate the presence of quasinormal modes.
We show a simple quantum system that can imitate the particle in the black string background, whose solutions are also applications of the biconfluent Heun function.
arXiv Detail & Related papers (2024-12-31T15:03:57Z) - Emptiness Instanton in Quantum Polytropic Gas [49.1574468325115]
The problem involves determining the probability of the spontaneous formation of an empty interval in the ground state of the gas.
By solving the hydrodynamic equations in imaginary time, we derive the analytic form of the emptiness instanton.
This solution is expressed as an integral representation analogous to those used for correlation functions in Conformal Field Theory.
arXiv Detail & Related papers (2024-12-16T11:58:51Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications [0.0]
We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
arXiv Detail & Related papers (2023-04-12T18:43:39Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The presence of non-analyticities and singularities in the wavefunction
and the role of invisible delta potentials [0.0]
We identify the correct differential equation for a divergent square-integrable solution.
We infer that the divergent wavefunction would be caused by the potential V(r)=-r(r)
Because of its peculiar form and the fact that it leads to a divergent potential energy V> = infinity, the potential V(r) and the divergent wavefunction associated with it are not physically meaningful.
arXiv Detail & Related papers (2020-11-30T23:37:00Z) - Integrability of $1D$ Lindbladians from operator-space fragmentation [0.0]
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems.
We show that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimension.
arXiv Detail & Related papers (2020-09-24T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.