Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space
- URL: http://arxiv.org/abs/2405.17310v1
- Date: Mon, 27 May 2024 16:11:39 GMT
- Title: Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space
- Authors: Alexander Teretenkov, Oleg Lychkovskiy,
- Abstract summary: We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address dissipative dynamics of the one-dimensional nearest-neighbour $XX$ spin-$1/2$ chain governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. In the absence of dissipation the model is integrable. We identify a broad class of dissipative terms that generically destroy integrability but leave the operator space of the model fragmented into an extensive number of dynamically disjoint subspaces of varying dimensions. In sufficiently small subspaces the GKSL equation in the Heisenberg representation can be easily solved, sometimes in a closed analytical form. We provide an example of such an exact solution for a specific choice of dissipative terms. It is found that observables experience the Wannier-Stark localization in the corresponding operator subspace. As a result, the expectation values of the observables are linear combinations of essentially a few discrete decay modes, the long time dynamics being governed by the slowest mode. We examine the complex Liouvillian eigenvalue corresponding to this latter mode as a function of the dissipation strength. We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay. We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace. Finally, we point out that our exact solutions of the GKSL equation entail exact solutions of the Schr\"odinger equation describing the quench dynamics in closed spin ladders dual to the dissipative spin chains.
Related papers
- Heisenberg formulation of adiabatic elimination for open quantum systems
with two time-scales [0.0]
Consider an open quantum system governed by a Gorini, Kossakowski, Sudarshan, Lindblad (GKSL) master equation with two times-scales.
Adiabatic elimination is usually performed in the Schr"odinger picture.
We propose here an Heisenberg formulation where the invariant operators attached to the fast decay dynamics towards the quasi-equilibria subspace play a key role.
arXiv Detail & Related papers (2023-03-30T11:53:41Z) - Spectral and steady-state properties of fermionic random quadratic
Liouvillians [0.3774866290142281]
We study spectral and steady-state properties of generic Markovian dissipative systems.
We find two distinct phases where the support of the single-particle spectrum has one or two connected components.
arXiv Detail & Related papers (2022-10-14T16:55:51Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - A unified approach to the nonlinear Rabi models [0.0]
An analytical approach is proposed and applied to study the two-photon, two-mode and intensity-dependent Rabi models.
This work paves a way for the analysis of the novel physics in nonlinear quantum optics.
arXiv Detail & Related papers (2022-06-20T14:29:14Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Universality class of Ising critical states with long-range losses [0.0]
We show that spatial resolved dissipation can act on $d$-dimensional spin systems in the Ising universality class.
We consider power-law decaying spin losses with a Lindbladian spectrum closing at small momenta as $propto qalpha$.
arXiv Detail & Related papers (2021-08-27T17:59:51Z) - Integrability of $1D$ Lindbladians from operator-space fragmentation [0.0]
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems.
We show that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimension.
arXiv Detail & Related papers (2020-09-24T15:10:43Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.