論文の概要: Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle
in Virtual Open Space with Static Obstacles
- arxiv url: http://arxiv.org/abs/2009.11799v1
- Date: Thu, 24 Sep 2020 16:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 05:15:20.956174
- Title: Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle
in Virtual Open Space with Static Obstacles
- Title(参考訳): 静止障害物のある仮想空間における無人航空機の強化学習による運動計画
- Authors: Sanghyun Kim, Jongmin Park, Jae-Kwan Yun, and Jiwon Seo
- Abstract要約: 静的障害物のあるオープンスペースにおける無人航空機(UAV)の動作計画に強化学習を適用した。
強化学習が進むにつれて,モデルの平均報酬と目標率が向上した。
- 参考スコア(独自算出の注目度): 3.5356468463540214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we applied reinforcement learning based on the proximal policy
optimization algorithm to perform motion planning for an unmanned aerial
vehicle (UAV) in an open space with static obstacles. The application of
reinforcement learning through a real UAV has several limitations such as time
and cost; thus, we used the Gazebo simulator to train a virtual quadrotor UAV
in a virtual environment. As the reinforcement learning progressed, the mean
reward and goal rate of the model were increased. Furthermore, the test of the
trained model shows that the UAV reaches the goal with an 81% goal rate using
the simple reward function suggested in this work.
- Abstract(参考訳): 本研究では,無人航空機(UAV)の静止障害物のあるオープンスペースでの動作計画を行うために,近似ポリシ最適化アルゴリズムに基づく強化学習を適用した。
実UAVによる強化学習の適用には,時間やコストなどいくつかの制限があるため,仮想環境における仮想4乗子UAVのトレーニングにはGazeboシミュレータを用いた。
強化学習が進むにつれて,モデルの平均報酬と目標率が向上した。
さらに,本研究で提案した単純な報酬関数を用いて,UAVが81%の目標率で目標に達することを示す。
関連論文リスト
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
本稿では,マルチロールUAV協調追従ゲームにおける意思決定のための深層強化学習モデルを提案する。
提案手法は,追従回避ゲームシナリオにおけるUAVの自律的意思決定を可能にする。
論文 参考訳(メタデータ) (2024-11-05T10:45:30Z) - SOAR: Self-supervision Optimized UAV Action Recognition with Efficient Object-Aware Pretraining [65.9024395309316]
無人航空機(UAV)が捉えた航空映像の自己監督型事前学習アルゴリズムについて紹介する。
我々は,UAVビデオの事前学習効率と下流行動認識性能を向上させるために,事前学習プロセスを通じて人体知識を取り入れた。
論文 参考訳(メタデータ) (2024-09-26T21:15:22Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
無人航空機(UAV)とメタバースの相乗効果は、UAVメタバースと呼ばれる新しいパラダイムを生み出している。
本稿では,UAVメタバースにおける効率的なUTマイグレーションのためのプルーニング技術に基づく,機械学習に基づく小さなゲームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T02:14:13Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
論文 参考訳(メタデータ) (2023-06-15T20:50:05Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
本稿では, 深部強化学習に基づく無人航空機(UAV)の連続制御に着目した。
本稿では,UAVが飛行中の障害物を自動的に回避できる深層強化学習(DRL)法を提案する。
論文 参考訳(メタデータ) (2023-04-07T01:44:05Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
本研究は,UAV自律ナビゲーションとDQN強化学習を取り入れた発電所検査システムを提案する。
訓練されたモデルは、UAVが困難な環境で単独で移動できるようにすることで、検査戦略が実際に適用される可能性が高い。
論文 参考訳(メタデータ) (2023-03-16T00:58:50Z) - Reinforcement learning reward function in unmanned aerial vehicle
control tasks [0.0]
報酬関数は、目標に対する簡易な軌道の時間の構成と推定に基づいている。
新たに開発された仮想環境において,報酬関数の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-20T10:32:44Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning
Approach [1.552282932199974]
深層強化学習を用いた自律型UAV経路計画フレームワークを提案する。
目的は、自力で訓練されたUAVを空飛ぶ移動体ユニットとして使用し、空間的に分散した移動または静的な目標に到達することである。
論文 参考訳(メタデータ) (2020-03-21T19:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。