論文の概要: Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2306.10071v1
- Date: Thu, 15 Jun 2023 20:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 01:18:13.091186
- Title: Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning
- Title(参考訳): 深部逆補強学習による適応学習を用いたセル接続型UAVの連成経路計画とパワーアロケーション
- Authors: Alireza Shamsoshoara, Fatemeh Lotfi, Sajad Mousavi, Fatemeh Afghah,
Ismail Guvenc
- Abstract要約: 本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
- 参考スコア(独自算出の注目度): 7.760962597460447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates an interference-aware joint path planning and power
allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in
a sparse suburban environment. The UAV's goal is to fly from an initial point
and reach a destination point by moving along the cells to guarantee the
required quality of service (QoS). In particular, the UAV aims to maximize its
uplink throughput and minimize the level of interference to the ground user
equipment (UEs) connected to the neighbor cellular BSs, considering the
shortest path and flight resource limitation. Expert knowledge is used to
experience the scenario and define the desired behavior for the sake of the
agent (i.e., UAV) training. To solve the problem, an apprenticeship learning
method is utilized via inverse reinforcement learning (IRL) based on both
Q-learning and deep reinforcement learning (DRL). The performance of this
method is compared to learning from a demonstration technique called behavioral
cloning (BC) using a supervised learning approach. Simulation and numerical
results show that the proposed approach can achieve expert-level performance.
We also demonstrate that, unlike the BC technique, the performance of our
proposed approach does not degrade in unseen situations.
- Abstract(参考訳): 本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応ジョイントパス計画と電力配分機構について検討する。
UAVの目標は、最初の地点から飛行し、必要なサービス品質(QoS)を保証するためにセルに沿って移動することで目的地に到達することである。
特にUAVは、最短経路と飛行資源制限を考慮して、そのアップリンクスループットを最大化し、近隣のセルBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
専門家の知識は、シナリオを経験し、エージェント(UAV)訓練のために望ましい行動を定義するために使用される。
この問題を解決するために、Q-ラーニングとDep reinforcement Learning(DRL)の両方に基づいて、逆強化学習(IRL)を介して見習いの学習を行う。
本手法の性能は, 教師付き学習手法を用いて, 行動クローニング(BC)と呼ばれる実演手法から学習することと比較される。
シミュレーションと数値計算により,提案手法がエキスパートレベルの性能を実現することを示す。
また,bc手法とは異なり,提案手法の性能が未熟な状況では低下しないことを示す。
関連論文リスト
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
本研究は,UAV自律ナビゲーションとDQN強化学習を取り入れた発電所検査システムを提案する。
訓練されたモデルは、UAVが困難な環境で単独で移動できるようにすることで、検査戦略が実際に適用される可能性が高い。
論文 参考訳(メタデータ) (2023-03-16T00:58:50Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Federated Learning for UAV Swarms Under Class Imbalance and Power
Consumption Constraints [6.995852507959362]
設計上の制約を考慮しつつ、UAVの利用効率を調査することが不可欠である。
本稿では,各UAVが機械学習分類タスクを遂行する際のUAVスワムの展開について検討する。
論文 参考訳(メタデータ) (2021-08-23T16:10:14Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
論文 参考訳(メタデータ) (2020-09-21T12:35:23Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。