論文の概要: daVinciNet: Joint Prediction of Motion and Surgical State in
Robot-Assisted Surgery
- arxiv url: http://arxiv.org/abs/2009.11937v1
- Date: Thu, 24 Sep 2020 20:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 04:41:33.630476
- Title: daVinciNet: Joint Prediction of Motion and Surgical State in
Robot-Assisted Surgery
- Title(参考訳): daVinciNet:ロボット支援手術における運動と手術状態の同時予測
- Authors: Yidan Qin, Seyedshams Feyzabadi, Max Allan, Joel W. Burdick, Mahdi
Azizian
- Abstract要約: 本稿では,ロボット動作と手術状態予測のためのエンドツーエンドのデュアルタスクモデルdaVinciNetを提案する。
我々のモデルでは、最大93.85%の短期(0.5s)と82.11%の長期(2s)の予測精度、1.07mmの短期および5.62mmの長期軌道予測誤差が達成される。
- 参考スコア(独自算出の注目度): 13.928484202934651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a technique to concurrently and jointly predict the
future trajectories of surgical instruments and the future state(s) of surgical
subtasks in robot-assisted surgeries (RAS) using multiple input sources. Such
predictions are a necessary first step towards shared control and supervised
autonomy of surgical subtasks. Minute-long surgical subtasks, such as suturing
or ultrasound scanning, often have distinguishable tool kinematics and visual
features, and can be described as a series of fine-grained states with
transition schematics. We propose daVinciNet - an end-to-end dual-task model
for robot motion and surgical state predictions. daVinciNet performs concurrent
end-effector trajectory and surgical state predictions using features extracted
from multiple data streams, including robot kinematics, endoscopic vision, and
system events. We evaluate our proposed model on an extended Robotic
Intra-Operative Ultrasound (RIOUS+) imaging dataset collected on a da Vinci Xi
surgical system and the JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS). Our model achieves up to 93.85% short-term (0.5s) and 82.11%
long-term (2s) state prediction accuracy, as well as 1.07mm short-term and
5.62mm long-term trajectory prediction error.
- Abstract(参考訳): 本稿では,複数入力源を用いたロボット補助手術(RAS)における手術器具の今後の軌跡と手術用サブタスクの将来状況を同時かつ共同で予測する手法を提案する。
このような予測は、手術用サブタスクの共有制御と教師付き自律化に向けた第一歩である。
縫合や超音波スキャンなどの微小な手術用サブタスクは、しばしば区別可能なツールキネマティクスと視覚的特徴を持ち、遷移スキーマを伴う一連の細かい状態として記述できる。
本稿では,ロボット動作と手術状態予測のためのエンドツーエンドのデュアルタスクモデルdaVinciNetを提案する。
daVinciNetは、ロボットキネマティクス、内視鏡視、システムイベントなど、複数のデータストリームから抽出された特徴を使用して、同時的なエンドエフェクタ軌道と手術状態予測を実行する。
ダ・ヴィンチ手術システムとJHU-ISI Gesture and Skill Assessment Working Set(JIGSAWS)で収集した拡張型ロボット内超音波(RIOUS+)画像データセットについて検討を行った。
このモデルは、最大93.85%の短期(0.5s)と82.11%の長期(2s)状態予測精度、1.07mmの短期および5.62mmの長期軌道予測誤差を達成している。
関連論文リスト
- VISAGE: Video Synthesis using Action Graphs for Surgery [34.21344214645662]
腹腔鏡下手術における映像生成の新しい課題について紹介する。
提案手法であるVISAGEは,アクションシーングラフのパワーを利用して,腹腔鏡下手術のシーケンシャルな特徴を捉える。
腹腔鏡下手術における高忠実度ビデオ生成について検討した。
論文 参考訳(メタデータ) (2024-10-23T10:28:17Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
腹腔内ビデオから外科的ワークフローの重要なインタラクティブな側面を理解し,予測できる予測型ニューラルネットワークを提案する。
我々は,既存の手術用データセットとアプリケーションに対するアプローチを検証し,アクション・トリプレットの検出と予測を行った。
この結果は、非構造的な代替案と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-03T00:58:05Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
そこで我々は,様々な外科手術を施した楽器の先端を正確に分類する新しいビジュアル・キネマティクスグラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
クロスモーダル・コントラッシブ・ロスは、キネマティクスからチップセグメンテーションのイメージへの頑健な幾何学的先行を組み込むように設計されている。
論文 参考訳(メタデータ) (2023-09-02T14:52:58Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Recognition and Prediction of Surgical Gestures and Trajectories Using
Transformer Models in Robot-Assisted Surgery [10.719885390990433]
トランスフォーマーモデルは、自然言語処理(NLP)のために、ワードシーケンスをモデル化するために最初に開発された。
本稿では, ジェスチャー認識, ジェスチャー予測, 軌道予測の3つのタスクに対して, トランスフォーマーモデルを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-12-03T20:26:48Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
カメラビューから3Dグラフを生成するための最新のコンピュータビジョン手法を利用する。
次に,手術手順の象徴的,意味的表現を統一することを目的としたマルチモーダルセマンティックグラフシーン(MSSG)を紹介する。
論文 参考訳(メタデータ) (2021-06-09T14:35:44Z) - Future Frame Prediction for Robot-assisted Surgery [57.18185972461453]
本稿では,ロボット手術用ビデオシーケンスにおけるフレーム予測のためのtpg-vaeモデルを提案する。
コンテンツ配信に加えて、私たちのモデルは、手術ツールの小さな動きを処理するために斬新な運動分布を学習します。
論文 参考訳(メタデータ) (2021-03-18T15:12:06Z) - Temporal Segmentation of Surgical Sub-tasks through Deep Learning with
Multiple Data Sources [14.677001578868872]
本稿では,タスクが進行するにつれて発生する動作や事象に基づいて,統一的な手術状態推定モデルを提案する。
JHU-ISI Gesture and Skill Assessment Working Set(JIGSAWS)と,ロボット内超音波(RIOUS)画像を含むより複雑なデータセットについて検討した。
本モデルでは,89.4%まで優れたフレームワイド状態推定精度を実現し,最先端の手術状態推定モデルを改善する。
論文 参考訳(メタデータ) (2020-02-07T17:49:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。