論文の概要: Controllable Text Generation with Focused Variation
- arxiv url: http://arxiv.org/abs/2009.12046v1
- Date: Fri, 25 Sep 2020 06:31:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 22:48:39.032061
- Title: Controllable Text Generation with Focused Variation
- Title(参考訳): 焦点変化を考慮した制御可能なテキスト生成
- Authors: Lei Shu, Alexandros Papangelis, Yi-Chia Wang, Gokhan Tur, Hu Xu,
Zhaleh Feizollahi, Bing Liu, Piero Molino
- Abstract要約: Focused-Variation Network (FVN) は言語生成を制御する新しいモデルである。
FVNは、コードブック内の各属性に対する非結合なラテント空間を学習し、制御性と多様性の両方を可能にする。
我々は、注釈付きコンテンツとスタイルを持つ2つのテキスト生成データセット上でFVNを評価し、自動評価と人的評価により、最先端のパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 71.07811310799664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces Focused-Variation Network (FVN), a novel model to
control language generation. The main problems in previous controlled language
generation models range from the difficulty of generating text according to the
given attributes, to the lack of diversity of the generated texts. FVN
addresses these issues by learning disjoint discrete latent spaces for each
attribute inside codebooks, which allows for both controllability and
diversity, while at the same time generating fluent text. We evaluate FVN on
two text generation datasets with annotated content and style, and show
state-of-the-art performance as assessed by automatic and human evaluations.
- Abstract(参考訳): 本稿では,言語生成を制御する新しいモデルであるfocus-variation network (fvn)を提案する。
従来の制御言語生成モデルの主な問題は、与えられた属性に従ってテキストを生成することの難しさから、生成されたテキストの多様性の欠如まで様々である。
FVNはこれらの問題に対処するために、コードブック内の各属性に対する離散潜在空間を学習し、制御性と多様性の両方を同時に生成する。
注釈付きコンテンツとスタイルを持つ2つのテキスト生成データセット上でfvnを評価し,自動評価と人間評価で評価した最先端の性能を示す。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
本稿では,後継機能 (SF) と言語モデル修正の2つの基本概念を基礎とするSF-GENを紹介する。
SF-GENはこの2つをシームレスに統合し、LCMのパラメータを変更することなくテキスト生成の動的ステアリングを可能にする。
我々の知る限り、本研究はテキスト生成における後継機能の最初の応用である。
論文 参考訳(メタデータ) (2023-11-03T00:17:08Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
マルチアスペクト制御可能なテキスト生成は、複数の望ましい属性を同時に持つ流動文を生成することを目的としている。
マルチアスペクト制御のための新しいアプローチ、すなわちMacLaSaを導入し、複数の側面に対してコンパクトな潜在空間を推定する。
また,MacLaSaは,高い推論速度を維持しつつ,属性関連性やテキスト品質を高いベースラインで向上させることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:30:35Z) - DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text
Generation [34.49194429157166]
ラベル付きデータが不十分な場合、事前学習された言語モデルの微調整を増強することにより、言語理解において再び自己学習(ST)が向上した。
STを属性制御可能な言語生成に組み込むことは依然として困難である。
論文 参考訳(メタデータ) (2022-12-16T21:44:34Z) - An Overview on Controllable Text Generation via Variational
Auto-Encoders [15.97186478109836]
ニューラルベース生成モデリングの最近の進歩は、コンピュータシステムが人間と会話できるという期待を再燃させた。
変分自動エンコーダ(VAE)のような潜在変数モデル(LVM)は、テキストデータの分布パターンを特徴付けるように設計されている。
この概要は、既存の生成方式、テキスト変分自動エンコーダに関連する問題、および制御可能な生成に関するいくつかのアプリケーションについて概説する。
論文 参考訳(メタデータ) (2022-11-15T07:36:11Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
制御可能なテキスト生成システムは、しばしば制御コードを利用して、スタイルや長さといった出力の様々な特性を指示する。
NLPの因果推論に関する最近の研究に触発された本論文は、これらの制御符号に基づく条件付きテキスト生成アルゴリズムにおいて、これまで見過ごされていた欠陥を明らかにする。
トレーニングセットにおけるこれらの相関を減少させるための2つの簡単な手法を提案する。
論文 参考訳(メタデータ) (2022-10-06T19:00:51Z) - Attribute Alignment: Controlling Text Generation from Pre-trained
Language Models [46.19190007510232]
本論文では, テキスト生成を簡便かつ柔軟に制御する手法を提案する。
属性のトークンレベル分布を乱すように識別器を訓練する最近の取り組みとは対照的に、同じデータを用いてアライメント関数を学習し、トレーニング済みの非制御言語モデルを誘導し、元の言語モデルパラメータを変更することなく、ターゲット属性を持つテキストを生成する。
論文 参考訳(メタデータ) (2021-03-20T01:51:32Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。