論文の概要: Predicting COVID-19 cases using Bidirectional LSTM on multivariate time
series
- arxiv url: http://arxiv.org/abs/2009.12325v1
- Date: Thu, 10 Sep 2020 12:53:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 04:20:41.172136
- Title: Predicting COVID-19 cases using Bidirectional LSTM on multivariate time
series
- Title(参考訳): 多変量時系列における双方向LSTMを用いた新型コロナウイルスの予測
- Authors: Ahmed Ben Said, Abdelkarim Erradi, Hussein Aly, Abdelmonem Mohamed
- Abstract要約: 本稿では,新型コロナウイルス感染者の累積数を予測するための深層学習手法を提案する。
ロックダウンに加え、複数の国のデータにより、毎日の累積感染者の予測の精度が向上している。
- 参考スコア(独自算出の注目度): 1.8352113484137624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: To assist policy makers in taking adequate decisions to stop the
spread of COVID-19 pandemic, accurate forecasting of the disease propagation is
of paramount importance. Materials and Methods: This paper presents a deep
learning approach to forecast the cumulative number of COVID-19 cases using
Bidirectional Long Short-Term Memory (Bi-LSTM) network applied to multivariate
time series. Unlike other forecasting techniques, our proposed approach first
groups the countries having similar demographic and socioeconomic aspects and
health sector indicators using K-Means clustering algorithm. The cumulative
cases data for each clustered countries enriched with data related to the
lockdown measures are fed to the Bidirectional LSTM to train the forecasting
model. Results: We validate the effectiveness of the proposed approach by
studying the disease outbreak in Qatar. Quantitative evaluation, using multiple
evaluation metrics, shows that the proposed technique outperforms state-of-art
forecasting approaches. Conclusion: Using data of multiple countries in
addition to lockdown measures improve accuracy of the forecast of daily
cumulative COVID-19 cases.
- Abstract(参考訳): 背景:covid-19パンデミックの感染拡大を防ぐために適切な判断を下す政策立案者を支援するために,感染伝播の正確な予測が極めて重要である。
材料と方法:多変量時系列に適用したBidirectional Long Short-Term Memory (Bi-LSTM) ネットワークを用いて,COVID-19感染者の累積数を予測するための深層学習手法を提案する。
他の予測手法とは異なり、提案手法は、k平均クラスタリングアルゴリズムを用いて、人口統計学的および社会経済的な側面を持つ国と健康セクター指標を第一にグループ化する。
ロックダウン対策に関するデータに富んだクラスタ化された各国の累積ケースデータを双方向LSTMに供給し、予測モデルをトレーニングする。
結果: カタールで発生した疾患について検討し,提案手法の有効性を検証する。
複数の評価指標を用いた定量的評価は,提案手法が最先端予測手法より優れていることを示す。
結論:ロックダウン対策に加え、複数の国のデータを利用することで、毎日の累積感染者の予測の精度が向上する。
関連論文リスト
- A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19 [0.6874745415692134]
本稿では,感染症予測の課題に対処する新しいアプローチを提案する。
本稿では,複数の情報源からの情報を活用するマルチラテラルアテンション強化型GRUモデルを提案する。
GRUフレームワークに注意機構を組み込むことで、我々のモデルはデータ内の複雑な関係や時間的依存を効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-08-26T06:31:53Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
本稿では,時間関連メタラーニング(TAML)手法を提案する。
タスク分割後のスパーシリティ問題に対処するため、TAMLは時間情報共有戦略を採用し、正のサンプル数を増やす。
複数の臨床データセットに対するTAMLの有効性を示す。
論文 参考訳(メタデータ) (2023-03-05T03:54:54Z) - Strict baselines for Covid-19 forecasting and ML perspective for USA and
Russia [105.54048699217668]
Covid-19は、2年間にわたって蓄積されたデータセットを収集し、予測分析に使用できるようにする。
本研究は、米国とロシアの2カ国の地域データに基づいて、Covid-19の拡散のダイナミクスを予測するための様々な種類の方法に関する一貫した研究結果である。
論文 参考訳(メタデータ) (2022-07-15T18:21:36Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
2019年12月の新型コロナウイルスの感染は、すでに世界中で数百万人を感染させ、拡大し続けています。
流行のカーブが平ら化し始めた直後、多くの国が再びケースの増加を目撃し始めている。
したがって、国家当局や保健当局に将来の時代の即時戦略を提供するには、時系列予測モデルの徹底的な分析が必要です。
論文 参考訳(メタデータ) (2021-05-05T14:56:27Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
疫学領域における新型コロナウイルスの流行を予測するための機械学習(ML)アプローチの比較分析を行った。
これらの結果から,短期的政策の意思決定を支援するMLアルゴリズムの利点が明らかになった。
論文 参考訳(メタデータ) (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
新型コロナウイルス(COVID-19)の世界的な感染拡大を受け、多くの国が前例のないロックダウン措置を講じている。
さまざまなロックダウンポリシーシナリオの下で、新型コロナウイルスの死亡率を予測するデータ駆動モデルが不可欠だ。
本稿では,グローバルな状況下での新型コロナウイルスロックダウンポリシーの効果を予測するためのベイズモデルを開発する。
論文 参考訳(メタデータ) (2020-05-13T18:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。