Symbolic Relational Deep Reinforcement Learning based on Graph Neural
Networks and Autoregressive Policy Decomposition
- URL: http://arxiv.org/abs/2009.12462v4
- Date: Fri, 25 Aug 2023 13:31:09 GMT
- Title: Symbolic Relational Deep Reinforcement Learning based on Graph Neural
Networks and Autoregressive Policy Decomposition
- Authors: Jarom\'ir Janisch, Tom\'a\v{s} Pevn\'y and Viliam Lis\'y
- Abstract summary: We focus on reinforcement learning in relational problems that are naturally defined in terms of objects, their relations, and object-centric actions.
We present a deep RL framework based on graph neural networks and auto-regressive policy decomposition that naturally works with these problems and is completely domain-independent.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on reinforcement learning (RL) in relational problems that are
naturally defined in terms of objects, their relations, and object-centric
actions. These problems are characterized by variable state and action spaces,
and finding a fixed-length representation, required by most existing RL
methods, is difficult, if not impossible. We present a deep RL framework based
on graph neural networks and auto-regressive policy decomposition that
naturally works with these problems and is completely domain-independent. We
demonstrate the framework's broad applicability in three distinct domains and
show impressive zero-shot generalization over different problem sizes.
Related papers
- Look, Learn and Leverage (L$^3$): Mitigating Visual-Domain Shift and Discovering Intrinsic Relations via Symbolic Alignment [19.700374722227107]
We propose a novel learning framework, Look, Learn and Leverage (L$3$), which decomposes the learning process into three distinct phases.
A relations discovery model can be trained on the source domain, and when the visual domain shifts and the intrinsic relations are absent, the pretrained relations discovery model can be directly reused and maintain a satisfactory performance.
arXiv Detail & Related papers (2024-08-30T15:53:48Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Learning Latent Dynamic Robust Representations for World Models [9.806852421730165]
Visual Model-Based Reinforcement Learning (MBL) promises to agent's knowledge about the underlying dynamics of the environment.
Top-temporal agents such as Dreamer often struggle with visual pixel-based inputs in the presence of irrelevant noise in the observation space.
We apply a-temporal masking strategy, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models.
arXiv Detail & Related papers (2024-05-10T06:28:42Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Reconciling Spatial and Temporal Abstractions for Goal Representation [0.4813333335683418]
Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms.
Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems.
We propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction.
arXiv Detail & Related papers (2024-01-18T10:33:30Z) - What Planning Problems Can A Relational Neural Network Solve? [91.53684831950612]
We present a circuit complexity analysis for relational neural networks representing policies for planning problems.
We show that there are three general classes of planning problems, in terms of the growth of circuit width and depth.
We also illustrate the utility of this analysis for designing neural networks for policy learning.
arXiv Detail & Related papers (2023-12-06T18:47:28Z) - Deep Explainable Relational Reinforcement Learning: A Neuro-Symbolic
Approach [18.38878415765146]
We propose Explainable Reinforcement Learning (DERRL), a framework that exploits the best of both -- neural and symbolic worlds.
DERRL combines relational representations and constraints from symbolic planning with deep learning to extract interpretable policies.
These policies are in the form of logical rules that explain how each decision (or action) is arrived at.
arXiv Detail & Related papers (2023-04-17T15:11:40Z) - On the Difficulty of Generalizing Reinforcement Learning Framework for
Combinatorial Optimization [6.935838847004389]
Combinatorial optimization problems (COPs) on the graph with real-life applications are canonical challenges in Computer Science.
The underlying principle of this approach is to deploy a graph neural network (GNN) for encoding both the local information of the nodes and the graph-structured data.
We use the security-aware phone clone allocation in the cloud as a classical quadratic assignment problem (QAP) to investigate whether or not deep RL-based model is generally applicable to solve other classes of such hard problems.
arXiv Detail & Related papers (2021-08-08T19:12:04Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.