What Planning Problems Can A Relational Neural Network Solve?
- URL: http://arxiv.org/abs/2312.03682v2
- Date: Thu, 2 May 2024 18:13:41 GMT
- Title: What Planning Problems Can A Relational Neural Network Solve?
- Authors: Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, Leslie Pack Kaelbling,
- Abstract summary: We present a circuit complexity analysis for relational neural networks representing policies for planning problems.
We show that there are three general classes of planning problems, in terms of the growth of circuit width and depth.
We also illustrate the utility of this analysis for designing neural networks for policy learning.
- Score: 91.53684831950612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Goal-conditioned policies are generally understood to be "feed-forward" circuits, in the form of neural networks that map from the current state and the goal specification to the next action to take. However, under what circumstances such a policy can be learned and how efficient the policy will be are not well understood. In this paper, we present a circuit complexity analysis for relational neural networks (such as graph neural networks and transformers) representing policies for planning problems, by drawing connections with serialized goal regression search (S-GRS). We show that there are three general classes of planning problems, in terms of the growth of circuit width and depth as a function of the number of objects and planning horizon, providing constructive proofs. We also illustrate the utility of this analysis for designing neural networks for policy learning.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Planning and Learning: Path-Planning for Autonomous Vehicles, a Review
of the Literature [5.015229992316947]
This short review aims to make the reader familiar with state-of-the-art works relating to planning, scheduling and learning.
First, we study state-of-the-art planning algorithms.
Then we explore in more detail graph neural networks, a recent variant of neural networks suited for processing graph-structured inputs.
arXiv Detail & Related papers (2022-07-26T20:56:18Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Dynamic Network Reconfiguration for Entropy Maximization using Deep
Reinforcement Learning [3.012947865628207]
Key problem in network theory is how to reconfigure a graph in order to optimize a quantifiable objective.
In this paper, we cast the problem of network rewiring for optimizing a specified structural property as a Markov Decision Process (MDP)
We then propose a general approach based on the Deep Q-Network (DQN) algorithm and graph neural networks (GNNs) that can efficiently learn strategies for rewiring networks.
arXiv Detail & Related papers (2022-05-26T18:44:22Z) - Neural combinatorial optimization beyond the TSP: Existing architectures
under-represent graph structure [9.673093148930876]
We analyze how and whether recent neural architectures can be applied to graph problems of practical importance.
We show that augmenting the structural representation of problems with Distance is a promising step towards the still-ambitious goal of learning multi-purpose autonomous solvers.
arXiv Detail & Related papers (2022-01-03T14:14:28Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
We present a novel framework that involves probabilistic fusion between the two families of predictions during network training.
Our network features a self-attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences.
We propose motion parmeterizations suitable for learning and show that our method achieves state-of-the-art performance on the challenging DeMoN and ScanNet datasets.
arXiv Detail & Related papers (2021-04-16T17:59:06Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.