論文の概要: Topic-Aware Multi-turn Dialogue Modeling
- arxiv url: http://arxiv.org/abs/2009.12539v2
- Date: Thu, 17 Dec 2020 05:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 08:43:58.149636
- Title: Topic-Aware Multi-turn Dialogue Modeling
- Title(参考訳): トピック対応マルチターン対話モデリング
- Authors: Yi Xu, Hai Zhao, Zhuosheng Zhang
- Abstract要約: 本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
- 参考スコア(独自算出の注目度): 91.52820664879432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the retrieval-based multi-turn dialogue modeling, it remains a challenge
to select the most appropriate response according to extracting salient
features in context utterances. As a conversation goes on, topic shift at
discourse-level naturally happens through the continuous multi-turn dialogue
context. However, all known retrieval-based systems are satisfied with
exploiting local topic words for context utterance representation but fail to
capture such essential global topic-aware clues at discourse-level. Instead of
taking topic-agnostic n-gram utterance as processing unit for matching purpose
in existing systems, this paper presents a novel topic-aware solution for
multi-turn dialogue modeling, which segments and extracts topic-aware
utterances in an unsupervised way, so that the resulted model is capable of
capturing salient topic shift at discourse-level in need and thus effectively
track topic flow during multi-turn conversation. Our topic-aware modeling is
implemented by a newly proposed unsupervised topic-aware segmentation algorithm
and Topic-Aware Dual-attention Matching (TADAM) Network, which matches each
topic segment with the response in a dual cross-attention way. Experimental
results on three public datasets show TADAM can outperform the state-of-the-art
method, especially by 3.3% on E-commerce dataset that has an obvious topic
shift.
- Abstract(参考訳): 検索に基づくマルチターン対話モデルでは,コンテキスト発話中の有意な特徴を抽出することで,最も適切な応答を選択することが課題となっている。
会話が進むにつれて、談話レベルのトピックシフトは、連続したマルチターン対話コンテキストを通じて自然に起こる。
しかし,すべての検索ベースシステムは,文脈発話表現のための局所的な話題語の利用に満足しているが,会話レベルでのこのような重要なグローバルな話題認識の手がかりを捉えられなかった。
本稿では,既存のシステムにおいて,トピックに依存しないn-gram発話を処理単位として扱う代わりに,トピック認識発話を教師なしの方法でセグメント抽出し,対話レベルでの健全なトピックシフトを把握し,マルチターン対話中のトピックフローを効果的に追跡する,マルチターン対話モデリングのための新しいトピック認識ソリューションを提案する。
トピック認識モデリングは,新たに提案したトピック認識セグメンテーションアルゴリズムとトピック認識デュアルアテンションマッチング(TADAM)ネットワークによって実現されている。
3つの公開データセットの実験結果は、TADAMが最先端の手法、特に明らかなトピックシフトを持つEコマースデータセットの3.3%を上回っていることを示している。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - Multi-Granularity Prompts for Topic Shift Detection in Dialogue [13.739991183173494]
対話トピックシフト検出の目標は、会話中の現在のトピックが変更されたか、変更する必要があるかを特定することである。
従来の研究は、事前訓練されたモデルを用いて発話を符号化するトピックシフトの検出に重点を置いていた。
我々は,複数粒度での対話,すなわちラベル,ターン,トピックから話題情報を抽出するために,プロンプトベースのアプローチを採用する。
論文 参考訳(メタデータ) (2023-05-23T12:35:49Z) - Sequential Topic Selection Model with Latent Variable for Topic-Grounded
Dialogue [21.1427816176227]
我々は,すべての会話における話題遷移を活用するために,SGTA(Sequential Global Topic Attention)という新しいアプローチを提案する。
我々のモデルは予測および生成タスクの競争ベースラインを上回っている。
論文 参考訳(メタデータ) (2022-10-17T07:34:14Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
本研究は,コヒーレンス検出とサブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サブ・サミマリ・ジェネレーションという2つのトピック・アウェア・コントラスト学習目標を提案する。
ベンチマークデータセットの実験では、提案手法が強いベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-09-10T17:03:25Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Modeling Topical Relevance for Multi-Turn Dialogue Generation [61.87165077442267]
マルチターン対話におけるトピックドリフト問題に対処する新しいモデルSTAR-BTMを提案する。
バイラルトピックモデルは、トレーニングデータセット全体に基づいて事前トレーニングされ、各コンテキストのトピック表現に基づいてトピックレベルの注意重みが計算される。
中国における顧客サービスデータと英語Ubuntuの対話データの両方の実験結果から、STAR-BTMは最先端の手法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-09-27T03:33:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。