論文の概要: A light-weight method to foster the (Grad)CAM interpretability and
explainability of classification networks
- arxiv url: http://arxiv.org/abs/2009.12546v1
- Date: Sat, 26 Sep 2020 09:15:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 08:25:56.054899
- Title: A light-weight method to foster the (Grad)CAM interpretability and
explainability of classification networks
- Title(参考訳): 分類網の(Grad)CAM解釈性と説明可能性向上のための軽量手法
- Authors: Alfred Sch\"ottl
- Abstract要約: そこで本研究では,局所分類ネットワークの説明可能性を向上させる軽量な手法を提案する。
本手法は,訓練過程中の(グラッド)CAMマップをトレーニング損失の修正により考慮し,付加的な構造要素を必要としない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a light-weight method which allows to improve the explainability
of localized classification networks. The method considers (Grad)CAM maps
during the training process by modification of the training loss and does not
require additional structural elements. It is demonstrated that the (Grad)CAM
interpretability, as measured by several indicators, can be improved in this
way. Since the method shall be applicable on embedded systems and on standard
deeper architectures, it essentially takes advantage of second order
derivatives during the training and does not require additional model layers.
- Abstract(参考訳): 本稿では,局所化分類ネットワークの説明可能性を向上させるための軽量手法について考察する。
本手法は,訓練過程中の(グラッド)CAMマップをトレーニング損失の修正により考慮し,付加的な構造要素を必要としない。
複数の指標によって測定された(Grad)CAM解釈性は、この方法で改善できることが示されている。
メソッドは組み込みシステムや標準のより深いアーキテクチャに適用できるので、基本的にはトレーニング中に2階微分を活用でき、追加のモデル層を必要としない。
関連論文リスト
- AdaCBM: An Adaptive Concept Bottleneck Model for Explainable and Accurate Diagnosis [38.16978432272716]
CLIPやConcept Bottleneck Models(CBM)といったビジョン言語モデルの統合は、ディープニューラルネットワーク(DNN)の決定を説明するための有望なアプローチを提供する。
CLIPは説明可能性とゼロショット分類の両方を提供するが、ジェネリックイメージとテキストデータによる事前トレーニングは、その分類精度と医療画像診断タスクへの適用性を制限する可能性がある。
本稿では, 単純な線形分類システムとして, 幾何学的表現のレンズを通して CBM フレームワークを再検討することによって, 従来と異なるアプローチをとる。
論文 参考訳(メタデータ) (2024-08-04T11:59:09Z) - Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems [0.0]
本稿では,メタラーニングによる非線形力学系のオブザーバ設計に対する新しいアプローチを提案する。
システム出力の測定から情報を活用するフレームワークを導入し、さまざまなシステム条件や属性にオンライン適応可能な学習ベースのKKLオブザーバを設計する。
論文 参考訳(メタデータ) (2023-10-30T12:25:14Z) - Layer-wise Feedback Propagation [53.00944147633484]
本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決に対するそれぞれの貢献に基づいて、個々のコネクションに報酬を割り当てる。
各種モデルやデータセットの勾配降下に匹敵する性能を達成できることの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Learning Visual Explanations for DCNN-Based Image Classifiers Using an
Attention Mechanism [8.395400675921515]
L-CAM-FmとL-CAM-Imgと呼ばれる、深層畳み込みニューラルネットワーク(DCNN)画像分類のための2つの新しい学習ベースAI(XAI)手法を提案する。
どちらの手法も、元の(凍結した)DCNNに挿入される注意機構を使用し、最後の畳み込み層の特徴写像からクラス活性化マップ(CAM)を導出するように訓練されている。
ImageNet上での実験評価により,提案手法は推論段階で1回の前方通過を必要としながら,競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-09-22T17:33:18Z) - SSA: Semantic Structure Aware Inference for Weakly Pixel-Wise Dense
Predictions without Cost [36.27226683586425]
The semantic structure aware inference (SSA) was proposed to explore the semantic structure information hidden in different stage of the CNN-based network to generate high-quality CAM in the model inference。
提案手法はパラメータを含まない利点があり,訓練は不要である。したがって,弱教師付き画素ワイド予測タスクにも適用可能である。
論文 参考訳(メタデータ) (2021-11-05T11:07:21Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
我々はコネクショニスト時間分類(CTC)に基づくASRの訓練と刈り取り方法を提案する。
本稿では,Transformer-CTCモデルをオンデマンドで様々な深さでプルーニングできることを示し,GPU上でのリアルタイム係数を0.005から0.002に改善した。
論文 参考訳(メタデータ) (2021-06-17T02:40:18Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
クロスドメイン・ショット分類タスク(CD-FSC)は、データセットで表されるドメインをまたいで一般化する要件と、少数ショット分類を組み合わせたものである。
既存のFSCモデルに対する新しいトレーニング手法を提案する。
説明誘導学習はモデル一般化を効果的に改善することを示す。
論文 参考訳(メタデータ) (2020-07-17T07:28:08Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Adapting Grad-CAM for Embedding Networks [35.72501942570962]
組込みネットワークに対するGrad-CAM法の適応性を提案する。
まず、Grad-CAMの安定性を向上させるために、複数のトレーニング例からグラデートウェイトを集約する。
そこで我々は,バックプロパゲーションを伴わない任意の画像に対する決定を効率的に説明するための重み移動法を開発した。
論文 参考訳(メタデータ) (2020-01-17T21:21:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。