Estimating Linear Dynamical Networks of Cyclostationary Processes
- URL: http://arxiv.org/abs/2009.12667v1
- Date: Sat, 26 Sep 2020 18:54:50 GMT
- Title: Estimating Linear Dynamical Networks of Cyclostationary Processes
- Authors: Harish Doddi, Deepjyoti Deka, Saurav Talukdar and Murti Salapaka
- Abstract summary: We present a novel algorithm for guaranteed topology learning in networks excited by cyclostationary processes.
Unlike prior work, the framework applies to linear dynamic system with complex valued dependencies.
In the second part of the article, we analyze conditions for consistent topology learning for bidirected radial networks when a subset of the network is unobserved.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology learning is an important problem in dynamical systems with
implications to security and optimal control. The majority of prior work in
consistent topology estimation relies on dynamical systems excited by
temporally uncorrelated processes. In this article, we present a novel
algorithm for guaranteed topology learning, in networks that are excited by
temporally colored, cyclostationary processes. Furthermore, unlike prior work,
the framework applies to linear dynamic system with complex valued
dependencies. In the second part of the article, we analyze conditions for
consistent topology learning for bidirected radial networks when a subset of
the network is unobserved. Here, few agents are unobserved and the full
topology along with unobserved nodes are recovered from observed agents data
alone. Our theoretical contributions are validated on test networks.
Related papers
- LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
We introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS)
LINOCS is a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data.
We demonstrate LINOCS' ability to recover the ground truth dynamical operators underlying synthetic time-series data.
arXiv Detail & Related papers (2024-04-28T18:16:58Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training.
We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations.
arXiv Detail & Related papers (2022-10-06T23:50:38Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
This paper presents a novel method for learning network topology and internal dynamics.
It is compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
Our method achieves state-of-the-art performance compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
arXiv Detail & Related papers (2022-06-02T03:22:34Z) - A scalable multi-step least squares method for network identification
with unknown disturbance topology [0.0]
We present an identification method for dynamic networks with known network topology.
We use a multi-step Sequential and Null Space Fitting method to deal with reduced rank noise.
We provide a consistency proof that includes explicit-based Box model structure informativity.
arXiv Detail & Related papers (2021-06-14T16:12:49Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
Reservoir computing is a popular approach to design recurrent neural networks.
The working principle of these networks is not fully understood.
A novel analysis of the dynamics of such networks is proposed.
arXiv Detail & Related papers (2020-03-24T00:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.