Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
Properties
- URL: http://arxiv.org/abs/2009.12710v1
- Date: Sat, 26 Sep 2020 23:29:41 GMT
- Title: Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
Properties
- Authors: Zeren Shui, George Karypis
- Abstract summary: We introduce a novel graph representation of molecules, heterogeneous molecular graph (HMG)
HMGNN incorporates global molecule representations and an attention mechanism into the prediction process.
Our model achieves state-of-the-art performance in 9 out of 12 tasks on the QM9 dataset.
- Score: 12.897488702184306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As they carry great potential for modeling complex interactions, graph neural
network (GNN)-based methods have been widely used to predict quantum mechanical
properties of molecules. Most of the existing methods treat molecules as
molecular graphs in which atoms are modeled as nodes. They characterize each
atom's chemical environment by modeling its pairwise interactions with other
atoms in the molecule. Although these methods achieve a great success, limited
amount of works explicitly take many-body interactions, i.e., interactions
between three and more atoms, into consideration. In this paper, we introduce a
novel graph representation of molecules, heterogeneous molecular graph (HMG) in
which nodes and edges are of various types, to model many-body interactions.
HMGs have the potential to carry complex geometric information. To leverage the
rich information stored in HMGs for chemical prediction problems, we build
heterogeneous molecular graph neural networks (HMGNN) on the basis of a neural
message passing scheme. HMGNN incorporates global molecule representations and
an attention mechanism into the prediction process. The predictions of HMGNN
are invariant to translation and rotation of atom coordinates, and permutation
of atom indices. Our model achieves state-of-the-art performance in 9 out of 12
tasks on the QM9 dataset.
Related papers
- Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for
Molecular Structures [20.276492931562036]
A growing number of Graph Neural Networks (GNNs) have been proposed to address this challenge.
In this work, we aim to design a GNN which is both powerful and efficient for molecule structures.
We build Multiplex Molecular Graph Neural Network (MXMNet)
arXiv Detail & Related papers (2020-11-15T05:55:15Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.