Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
Generative Model
- URL: http://arxiv.org/abs/2009.12760v2
- Date: Tue, 23 Mar 2021 06:05:03 GMT
- Title: Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
Generative Model
- Authors: Zhuonan He, Yikun Zhang, Yu Guan, Shanzhou Niu, Yi Zhang, Yang Chen,
Qiegen Liu
- Abstract summary: Iterative reconstruction is one of the most promising ways to compensate for the increased noise due to reduction of photon flux.
In this work we integrate the data-consistency as a conditional term into the iterative generative model for low-dose CT.
The distance between the reconstructed image and the manifold is minimized along with data fidelity during reconstruction.
- Score: 24.024765099719886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dose reduction in computed tomography (CT) is essential for decreasing
radiation risk in clinical applications. Iterative reconstruction is one of the
most promising ways to compensate for the increased noise due to reduction of
photon flux. Rather than most existing prior-driven algorithms that benefit
from manually designed prior functions or supervised learning schemes, in this
work we integrate the data-consistency as a conditional term into the iterative
generative model for low-dose CT. At the stage of prior learning, the gradient
of data density is directly learned from normal-dose CT images as a prior. Then
at the iterative reconstruction stage, the stochastic gradient descent is
employed to update the trained prior with annealed and conditional schemes. The
distance between the reconstructed image and the manifold is minimized along
with data fidelity during reconstruction. Experimental comparisons demonstrated
the noise reduction and detail preservation abilities of the proposed method.
Related papers
- AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
Computed tomography (CT) reconstruction plays a crucial role in industrial nondestructive testing and medical diagnosis.
Sparse view CT reconstruction aims to reconstruct high-quality CT images while only using a small number of projections.
We introduce AC-IND, a self-supervised method based on Attenuation Coefficient Estimation and Implicit Neural Distribution.
arXiv Detail & Related papers (2024-09-11T10:34:41Z) - One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
We propose a few-shot low-dose CT reconstruction method using Partitioned Hankel-based Diffusion (PHD) models.
In the iterative reconstruction stage, an iterative differential equation solver is employed along with data consistency constraints to update the acquired projection data.
The results approximate those of normaldose counterparts, validating PHD model as an effective and practical model for reducing artifacts and noise while preserving image quality.
arXiv Detail & Related papers (2024-05-27T13:44:53Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) is an unsupervised framework designed to address the exceptionally ill-posed CT reconstruction inverse problems.
DPER adopts the Half Quadratic Splitting (HQS) algorithm to decompose the inverse problem into data fidelity and distribution prior sub-problems.
We conduct comprehensive experiments to evaluate the performance of DPER on LACT and ultra-SVCT reconstruction with two public datasets.
arXiv Detail & Related papers (2024-04-27T12:55:13Z) - Low-Dose CT Image Reconstruction by Fine-Tuning a UNet Pretrained for
Gaussian Denoising for the Downstream Task of Image Enhancement [3.7960472831772765]
Computed Tomography (CT) is a widely used medical imaging modality, and reconstruction from low-dose CT data is a challenging task.
In this paper, we propose a less complex two-stage method for reconstruction of LDCT images.
The proposed method achieves a shared top ranking in the LoDoPaB-CT challenge and a first position with respect to the SSIM metric.
arXiv Detail & Related papers (2024-03-06T08:51:09Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications.
With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms.
We propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction.
The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
arXiv Detail & Related papers (2022-12-07T13:39:23Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
This study defines a training scheme to use low-dose sinograms as their own training targets.
We apply the self-supervision principle in the projection domain where the noise is element-wise independent.
We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods.
arXiv Detail & Related papers (2020-10-25T22:02:14Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.