Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction
- URL: http://arxiv.org/abs/2405.17167v1
- Date: Mon, 27 May 2024 13:44:53 GMT
- Title: Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction
- Authors: Wenhao Zhang, Bin Huang, Shuyue Chen, Xiaoling Xu, Weiwen Wu, Qiegen Liu,
- Abstract summary: We propose a few-shot low-dose CT reconstruction method using Partitioned Hankel-based Diffusion (PHD) models.
In the iterative reconstruction stage, an iterative differential equation solver is employed along with data consistency constraints to update the acquired projection data.
The results approximate those of normaldose counterparts, validating PHD model as an effective and practical model for reducing artifacts and noise while preserving image quality.
- Score: 10.158713017984345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose computed tomography (LDCT) plays a vital role in clinical applications by mitigating radiation risks. Nevertheless, reducing radiation doses significantly degrades image quality. Concurrently, common deep learning methods demand extensive data, posing concerns about privacy, cost, and time constraints. Consequently, we propose a few-shot low-dose CT reconstruction method using Partitioned Hankel-based Diffusion (PHD) models. During the prior learning stage, the projection data is first transformed into multiple partitioned Hankel matrices. Structured tensors are then extracted from these matrices to facilitate prior learning through multiple diffusion models. In the iterative reconstruction stage, an iterative stochastic differential equation solver is employed along with data consistency constraints to update the acquired projection data. Furthermore, penalized weighted least-squares and total variation techniques are introduced to enhance the resulting image quality. The results approximate those of normal-dose counterparts, validating PHD model as an effective and practical model for reducing artifacts and noise while preserving image quality.
Related papers
- DP-MDM: Detail-Preserving MR Reconstruction via Multiple Diffusion Models [7.601874398726257]
We propose a comprehensive detail-preserving reconstruction method using multiple diffusion models.
The framework effective-ly represents multi-scale sampled data, taking into ac-count the sparsity of the inverted pyramid architecture.
The proposed method was evaluated by con-ducting experiments on clinical and public datasets.
arXiv Detail & Related papers (2024-05-09T13:37:18Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Diffusion Probabilistic Priors for Zero-Shot Low-Dose CT Image Denoising [10.854795474105366]
Denoising low-dose computed tomography (CT) images is a critical task in medical image computing.
Existing unsupervised deep learning-based methods often require training with a large number of low-dose CT images.
We propose a novel unsupervised method that only utilizes normal-dose CT images during training, enabling zero-shot denoising of low-dose CT images.
arXiv Detail & Related papers (2023-05-25T09:38:52Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications.
With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms.
We propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction.
The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
arXiv Detail & Related papers (2022-12-07T13:39:23Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine.
We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior.
arXiv Detail & Related papers (2022-11-22T15:30:38Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
Generative Model [24.024765099719886]
Iterative reconstruction is one of the most promising ways to compensate for the increased noise due to reduction of photon flux.
In this work we integrate the data-consistency as a conditional term into the iterative generative model for low-dose CT.
The distance between the reconstructed image and the manifold is minimized along with data fidelity during reconstruction.
arXiv Detail & Related papers (2020-09-27T06:36:39Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.