QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates
- URL: http://arxiv.org/abs/2103.10695v1
- Date: Fri, 19 Mar 2021 09:06:12 GMT
- Title: QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates
- Authors: Tian Huang, Siong Thye Goh, Sabrish Gopalakrishnan, Tao Luo, Qianxiao
Li, Hoong Chuin Lau
- Abstract summary: We build surrogate models of QUBO solvers via learning from solver data on a collection of instances of a problem.
In this way, we are able capture the common structure of the instances and their interactions with the solver, and produce good choices of penalty parameters.
QROSS is shown to generalise well to out-of-distribution datasets and different types of QUBO solvers.
- Score: 14.905085636501438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An increasingly popular method for solving a constrained combinatorial
optimisation problem is to first convert it into a quadratic unconstrained
binary optimisation (QUBO) problem, and solve it using a standard QUBO solver.
However, this relaxation introduces hyper-parameters that balance the objective
and penalty terms for the constraints, and their chosen values significantly
impact performance. Hence, tuning these parameters is an important problem.
Existing generic hyper-parameter tuning methods require multiple expensive
calls to a QUBO solver, making them impractical for performance critical
applications when repeated solutions of similar combinatorial optimisation
problems are required. In this paper, we propose the QROSS method, in which we
build surrogate models of QUBO solvers via learning from solver data on a
collection of instances of a problem. In this way, we are able capture the
common structure of the instances and their interactions with the solver, and
produce good choices of penalty parameters with fewer number of calls to the
QUBO solver. We take the Traveling Salesman Problem (TSP) as a case study,
where we demonstrate that our method can find better solutions with fewer calls
to QUBO solver compared with conventional hyper-parameter tuning techniques.
Moreover, with simple adaptation methods, QROSS is shown to generalise well to
out-of-distribution datasets and different types of QUBO solvers.
Related papers
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
We propose an interactive genetic algorithm for solving multi-objective optimization problems under preference imprecision.
Our algorithm, called RIGA, can be applied to any multi-objective optimization problem provided that the aggregation function is linear in its parameters.
For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-10T13:56:15Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming [0.0]
We introduce a new model-oriented Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints.
After targeting simple problems, we aim to extend our method to be applied also for advanced decision problems.
arXiv Detail & Related papers (2022-08-05T10:50:03Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Square Root Bundle Adjustment for Large-Scale Reconstruction [56.44094187152862]
We propose a new formulation for the bundle adjustment problem which relies on nullspace marginalization of landmark variables by QR decomposition.
Our approach, which we call square root bundle adjustment, is algebraically equivalent to the commonly used Schur complement trick.
We show in real-world experiments with the BAL datasets that even in single precision the proposed solver achieves on average equally accurate solutions.
arXiv Detail & Related papers (2021-03-02T16:26:20Z) - A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization [5.460573052311485]
We propose a hybrid framework to solve large-scale permutation-based problems using a high-performance quadratic unconstrained binary optimization solver.
We propose techniques to overcome the challenges in using a QUBO solver that typically comes with limited numbers of bits.
arXiv Detail & Related papers (2020-09-27T07:15:25Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.