Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph
- URL: http://arxiv.org/abs/2009.12916v1
- Date: Sun, 27 Sep 2020 18:20:03 GMT
- Title: Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph
- Authors: Sumit Kumar, Yiming Gu, Jerrick Hoang, Galen Clark Haynes, Micol
Marchetti-Bowick
- Abstract summary: We propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene.
The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges.
We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
- Score: 4.574413934477815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Behavior prediction of traffic actors is an essential component of any
real-world self-driving system. Actors' long-term behaviors tend to be governed
by their interactions with other actors or traffic elements (traffic lights,
stop signs) in the scene. To capture this highly complex structure of
interactions, we propose to use a hybrid graph whose nodes represent both the
traffic actors as well as the static and dynamic traffic elements present in
the scene. The different modes of temporal interaction (e.g., stopping and
going) among actors and traffic elements are explicitly modeled by graph edges.
This explicit reasoning about discrete interaction types not only helps in
predicting future motion, but also enhances the interpretability of the model,
which is important for safety-critical applications such as autonomous driving.
We predict actors' trajectories and interaction types using a graph neural
network, which is trained in a semi-supervised manner. We show that our
proposed model, TrafficGraphNet, achieves state-of-the-art trajectory
prediction accuracy while maintaining a high level of interpretability.
Related papers
- Heterogeneous Graph-based Trajectory Prediction using Local Map Context
and Social Interactions [47.091620047301305]
We present a novel approach for vector-based trajectory prediction that addresses shortcomings by leveraging three crucial sources of information.
First, we model interactions between traffic agents by a semantic scene graph, that accounts for the nature and important features of their relation.
Second, we extract agent-centric image-based map features to model the local map context.
arXiv Detail & Related papers (2023-11-30T13:46:05Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
We present a novel approach for a graph-based motion prediction based on a heterogeneous holistic graph representation.
The information is encoded through different types of nodes and edges that both are enriched with arbitrary features.
arXiv Detail & Related papers (2023-01-31T10:46:46Z) - Relation-based Motion Prediction using Traffic Scene Graphs [12.68339084600328]
Representing relevant information of a traffic scene and understanding its environment is crucial for the success of autonomous driving.
In this work, we model traffic scenes in a form of spatial semantic scene graphs for various different predictions about the traffic participants.
Our learning and inference approach uses Graph Neural Networks (GNNs) and shows that incorporating explicit information about the spatial semantic relations between traffic participants improves the predicdtion results.
arXiv Detail & Related papers (2022-11-24T13:04:08Z) - LaneRCNN: Distributed Representations for Graph-Centric Motion
Forecasting [104.8466438967385]
LaneRCNN is a graph-centric motion forecasting model.
We learn a local lane graph representation per actor to encode its past motions and the local map topology.
We parameterize the output trajectories based on lane graphs, a more amenable prediction parameterization.
arXiv Detail & Related papers (2021-01-17T11:54:49Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
We construct a lane graph from raw map data to preserve the map structure.
We exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor.
Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
arXiv Detail & Related papers (2020-07-27T17:59:49Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.