Relation-based Motion Prediction using Traffic Scene Graphs
- URL: http://arxiv.org/abs/2212.02503v1
- Date: Thu, 24 Nov 2022 13:04:08 GMT
- Title: Relation-based Motion Prediction using Traffic Scene Graphs
- Authors: Maximilian Zipfl, Felix Hertlein, Achim Rettinger, Steffen Thoma,
Lavdim Halilaj, Juergen Luettin, Stefan Schmid, Cory Henson
- Abstract summary: Representing relevant information of a traffic scene and understanding its environment is crucial for the success of autonomous driving.
In this work, we model traffic scenes in a form of spatial semantic scene graphs for various different predictions about the traffic participants.
Our learning and inference approach uses Graph Neural Networks (GNNs) and shows that incorporating explicit information about the spatial semantic relations between traffic participants improves the predicdtion results.
- Score: 12.68339084600328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing relevant information of a traffic scene and understanding its
environment is crucial for the success of autonomous driving. Modeling the
surrounding of an autonomous car using semantic relations, i.e., how different
traffic participants relate in the context of traffic rule based behaviors, is
hardly been considered in previous work. This stems from the fact that these
relations are hard to extract from real-world traffic scenes. In this work, we
model traffic scenes in a form of spatial semantic scene graphs for various
different predictions about the traffic participants, e.g., acceleration and
deceleration. Our learning and inference approach uses Graph Neural Networks
(GNNs) and shows that incorporating explicit information about the spatial
semantic relations between traffic participants improves the predicdtion
results. Specifically, the acceleration prediction of traffic participants is
improved by up to 12% compared to the baselines, which do not exploit this
explicit information. Furthermore, by including additional information about
previous scenes, we achieve 73% improvements.
Related papers
- BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - Heterogeneous Graph-based Trajectory Prediction using Local Map Context
and Social Interactions [47.091620047301305]
We present a novel approach for vector-based trajectory prediction that addresses shortcomings by leveraging three crucial sources of information.
First, we model interactions between traffic agents by a semantic scene graph, that accounts for the nature and important features of their relation.
Second, we extract agent-centric image-based map features to model the local map context.
arXiv Detail & Related papers (2023-11-30T13:46:05Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
We propose Fine-grained Deep Traffic Inference, as termedI.
We construct a fine-grained traffic graph based on traffic signals to model the inter-road relations.
We are the first to conduct the city-level fine-grained traffic prediction.
arXiv Detail & Related papers (2023-06-19T14:03:42Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
We present a novel approach for a graph-based motion prediction based on a heterogeneous holistic graph representation.
The information is encoded through different types of nodes and edges that both are enriched with arbitrary features.
arXiv Detail & Related papers (2023-01-31T10:46:46Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
We propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene.
The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges.
We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
arXiv Detail & Related papers (2020-09-27T18:20:03Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.