Heterogeneous Graph-based Trajectory Prediction using Local Map Context
and Social Interactions
- URL: http://arxiv.org/abs/2311.18553v1
- Date: Thu, 30 Nov 2023 13:46:05 GMT
- Title: Heterogeneous Graph-based Trajectory Prediction using Local Map Context
and Social Interactions
- Authors: Daniel Grimm, Maximilian Zipfl, Felix Hertlein, Alexander Naumann,
J\"urgen L\"uttin, Steffen Thoma, Stefan Schmid, Lavdim Halilaj, Achim
Rettinger, J. Marius Z\"ollner
- Abstract summary: We present a novel approach for vector-based trajectory prediction that addresses shortcomings by leveraging three crucial sources of information.
First, we model interactions between traffic agents by a semantic scene graph, that accounts for the nature and important features of their relation.
Second, we extract agent-centric image-based map features to model the local map context.
- Score: 47.091620047301305
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Precisely predicting the future trajectories of surrounding traffic
participants is a crucial but challenging problem in autonomous driving, due to
complex interactions between traffic agents, map context and traffic rules.
Vector-based approaches have recently shown to achieve among the best
performances on trajectory prediction benchmarks. These methods model simple
interactions between traffic agents but don't distinguish between relation-type
and attributes like their distance along the road. Furthermore, they represent
lanes only by sequences of vectors representing center lines and ignore context
information like lane dividers and other road elements. We present a novel
approach for vector-based trajectory prediction that addresses these
shortcomings by leveraging three crucial sources of information: First, we
model interactions between traffic agents by a semantic scene graph, that
accounts for the nature and important features of their relation. Second, we
extract agent-centric image-based map features to model the local map context.
Finally, we generate anchor paths to enforce the policy in multi-modal
prediction to permitted trajectories only. Each of these three enhancements
shows advantages over the baseline model HoliGraph.
Related papers
- SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs [3.733790302392792]
Tray prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene.
We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a traffic scene graph.
arXiv Detail & Related papers (2024-04-30T09:11:04Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
We present a novel approach for a graph-based motion prediction based on a heterogeneous holistic graph representation.
The information is encoded through different types of nodes and edges that both are enriched with arbitrary features.
arXiv Detail & Related papers (2023-01-31T10:46:46Z) - Relation-based Motion Prediction using Traffic Scene Graphs [12.68339084600328]
Representing relevant information of a traffic scene and understanding its environment is crucial for the success of autonomous driving.
In this work, we model traffic scenes in a form of spatial semantic scene graphs for various different predictions about the traffic participants.
Our learning and inference approach uses Graph Neural Networks (GNNs) and shows that incorporating explicit information about the spatial semantic relations between traffic participants improves the predicdtion results.
arXiv Detail & Related papers (2022-11-24T13:04:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
We propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene.
The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges.
We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
arXiv Detail & Related papers (2020-09-27T18:20:03Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
We construct a lane graph from raw map data to preserve the map structure.
We exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor.
Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
arXiv Detail & Related papers (2020-07-27T17:59:49Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.