論文の概要: Semi-Supervised Image Deraining using Gaussian Processes
- arxiv url: http://arxiv.org/abs/2009.13075v1
- Date: Fri, 25 Sep 2020 17:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 23:05:42.455152
- Title: Semi-Supervised Image Deraining using Gaussian Processes
- Title(参考訳): ガウス過程を用いた半スーパービジョン画像デライニング
- Authors: Rajeev Yasarla, V.A. Sindagi, V.M. Patel
- Abstract要約: 合成データセットを用いて学習のネットワークをデライン化できる半教師付き学習フレームワークを提案する。
提案手法は,ラベル付き学習に比べ,ラベル付き学習に比べて性能が著しく向上することを示す。
- 参考スコア(独自算出の注目度): 18.434430658837258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent CNN-based methods for image deraining have achieved excellent
performance in terms of reconstruction error as well as visual quality.
However, these methods are limited in the sense that they can be trained only
on fully labeled data. Due to various challenges in obtaining real world
fully-labeled image deraining datasets, existing methods are trained only on
synthetically generated data and hence, generalize poorly to real-world images.
The use of real-world data in training image deraining networks is relatively
less explored in the literature. We propose a Gaussian Process-based
semi-supervised learning framework which enables the network in learning to
derain using synthetic dataset while generalizing better using unlabeled
real-world images. More specifically, we model the latent space vectors of
unlabeled data using Gaussian Processes, which is then used to compute
pseudo-ground-truth for supervising the network on unlabeled data. Through
extensive experiments and ablations on several challenging datasets (such as
Rain800, Rain200L and DDN-SIRR), we show that the proposed method is able to
effectively leverage unlabeled data thereby resulting in significantly better
performance as compared to labeled-only training. Additionally, we demonstrate
that using unlabeled real-world images in the proposed GP-based framework
results
- Abstract(参考訳): 近年のCNNによる画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
しかし、これらの手法は完全なラベル付きデータでのみ訓練できるという意味で制限されている。
実世界の完全ラベル付き画像デライニングデータセットを得る上で様々な課題があるため、既存の手法は合成されたデータのみに基づいて訓練されるため、実世界の画像にはあまり一般化されない。
画像デラリニングネットワークのトレーニングにおける実世界のデータの利用は、文献では比較的調査されていない。
そこで本研究では,合成データセットを用いたネットワーク学習を可能にするガウス過程に基づく半教師付き学習フレームワークを提案する。
より具体的には、ガウス過程を用いて未ラベルデータの潜在空間ベクトルをモデル化し、未ラベルデータ上でネットワークを監視するために擬似地下構造を計算する。
rain800, rain200l, ddn-sirrなど,いくつかの難解なデータセットに対する広範囲な実験とアブレーションを通じて,提案手法がラベルなしのデータを有効に活用できることを示した。
さらに,提案するgpベースフレームワークの結果にラベルなしの実世界画像を用いることを実証する。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - DataDAM: Efficient Dataset Distillation with Attention Matching [15.300968899043498]
研究者たちは、さまざまなデータセットをまたいだ強力な一般化を維持することによって、ディープラーニングのトレーニングコストを最小化しようと長年努力してきた。
データセットに関する新たな研究は、より大きな実際のデータセットの情報を含む小さな合成セットを作成することで、トレーニングコストの削減を目的としている。
しかし、従来の方法で生成された合成データは、元のトレーニングデータと同様に、配布・差別することが保証されていない。
論文 参考訳(メタデータ) (2023-09-29T19:07:48Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - ART-SS: An Adaptive Rejection Technique for Semi-Supervised restoration
for adverse weather-affected images [24.03416814412226]
SSR法の性能に及ぼすラベルなしデータの影響について検討する。
性能を劣化させる未ラベル画像の拒否を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-17T12:00:31Z) - Leveraging Self-Supervision for Cross-Domain Crowd Counting [71.75102529797549]
混雑したシーンで人をカウントするための最先端の方法は、群衆密度を推定するために深いネットワークに依存します。
われわれのネットワークは、通常の画像から逆さまの実際の画像を認識できるように訓練し、その不確実性を予測する能力を組み込む。
このアルゴリズムは、推論時に余分な計算をせずに、最先端のクロスドメイン群をカウントするアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2021-03-30T12:37:55Z) - PennSyn2Real: Training Object Recognition Models without Human Labeling [12.923677573437699]
我々はPennSyn2Realを提案する。20種類以上のマイクロエアロビー(MAV)の10万以上の4K画像からなる合成データセットである。
このデータセットは、MAV検出や分類などのハイレベルコンピュータビジョンタスクのための任意の数のトレーニングイメージを生成するために使用することができる。
このフレームワークを用いて生成された合成データは,検出やセグメンテーションといった一般的なオブジェクト認識タスクに対して,CNNモデルをトレーニングするために直接利用できることを示す。
論文 参考訳(メタデータ) (2020-09-22T02:53:40Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
本稿では,ターゲットドメインからの実際の画像を必要としない新しいデータベース生成手法と,(ii)交通標識のテンプレートを提案する。
この方法は、実際のデータでトレーニングを克服することではなく、実際のデータが利用できない場合に互換性のある代替手段になることを目的としている。
大規模なデータセットでは、完全に合成されたデータセットによるトレーニングは、実際のデータセットとトレーニングのパフォーマンスにほぼ一致する。
論文 参考訳(メタデータ) (2020-07-30T21:06:47Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z) - Can Synthetic Data Improve Object Detection Results for Remote Sensing
Images? [15.466412729455874]
本稿では,リモートセンシング画像航空機検出の性能向上のために,広域分布のリアルな合成データの利用を提案する。
レンダリング中に、インスタンスのサイズや背景画像のクラスなど、パラメータをランダムに設定します。
合成画像をよりリアルにするために,CycleGANと実際の未ラベル画像を用いて,画素レベルで合成画像を洗練する。
論文 参考訳(メタデータ) (2020-06-09T02:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。