論文の概要: What Disease does this Patient Have? A Large-scale Open Domain Question
Answering Dataset from Medical Exams
- arxiv url: http://arxiv.org/abs/2009.13081v1
- Date: Mon, 28 Sep 2020 05:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 20:48:09.803113
- Title: What Disease does this Patient Have? A Large-scale Open Domain Question
Answering Dataset from Medical Exams
- Title(参考訳): この患者はどんな病気を患っていますか。
医学試験からの大規模オープンドメイン質問応答データセット
- Authors: Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang and
Peter Szolovits
- Abstract要約: 専門医試験から収集した医療問題の解決を目的とした,最初のフリーフォームOpenQAデータセットであるMedQAを提示する。
英語、簡体字、中国語の3言語に対応しており、それぞれ12,723、34,251、14,123の質問がある。
- 参考スコア(独自算出の注目度): 35.644831813174974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open domain question answering (OpenQA) tasks have been recently attracting
more and more attention from the natural language processing (NLP) community.
In this work, we present the first free-form multiple-choice OpenQA dataset for
solving medical problems, MedQA, collected from the professional medical board
exams. It covers three languages: English, simplified Chinese, and traditional
Chinese, and contains 12,723, 34,251, and 14,123 questions for the three
languages, respectively. We implement both rule-based and popular neural
methods by sequentially combining a document retriever and a machine
comprehension model. Through experiments, we find that even the current best
method can only achieve 36.7\%, 42.0\%, and 70.1\% of test accuracy on the
English, traditional Chinese, and simplified Chinese questions, respectively.
We expect MedQA to present great challenges to existing OpenQA systems and hope
that it can serve as a platform to promote much stronger OpenQA models from the
NLP community in the future.
- Abstract(参考訳): オープンドメイン質問応答(OpenQA)タスクは、最近、自然言語処理(NLP)コミュニティからますます注目を集めている。
本稿では,医療委員会の専門試験から収集したmedqa(free-form multi-choice openqa dataset for solve medical problems)を提案する。
英語、簡体字中国語、伝統中国語の3つの言語を含み、それぞれ12,723問、34,251問、14,123問からなる。
文書検索と機械理解モデルを順次組み合わせ,ルールベースと一般的なニューラルメソッドの両方を実装した。
実験により,現在の最良の方法でも,英語,中国語,簡体字中国語の質問に対して,それぞれ36.7\%,42.0\%,70.1\%の検査精度しか達成できないことがわかった。
我々は、MedQAが既存のOpenQAシステムに大きな課題を提示し、NLPコミュニティからより強力なOpenQAモデルを促進するプラットフォームとして機能することを期待しています。
関連論文リスト
- MediFact at MEDIQA-M3G 2024: Medical Question Answering in Dermatology with Multimodal Learning [0.0]
本稿では,オープンエンド医療質問応答(QA)のための弱教師付き学習アプローチを提案することによって,従来の手法の限界に対処する。
本システムは,VGG16-CNN-SVMモデルを用いて,利用可能なMEDIQA-M3G画像を利用する。
この研究は、医療QA研究を前進させ、臨床意思決定支援システムへの道を切り開き、最終的に医療提供を改善する。
論文 参考訳(メタデータ) (2024-04-27T20:03:47Z) - Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
我々は,Multiple-choice Question answering (MCQA)のために設計されたBandarkar et al.(Bandarkar et al., 2023)を再利用した。
本稿では,英語と現代標準アラビア語(MSA)のためのガイドラインと並列EQAデータセットを提案する。
私たちの目標は、ベレベレにおける120以上の言語変異に対して、他者が私たちのアプローチを適応できるようにすることです。
論文 参考訳(メタデータ) (2024-04-26T11:46:05Z) - Building Efficient and Effective OpenQA Systems for Low-Resource Languages [17.64851283209797]
低コストで効率的な OpenQA システムを低リソース環境向けに開発できることを示す。
主な要素は、機械翻訳されたラベル付きデータセットと関連する非構造化知識ソースを用いた、弱い監視である。
我々は,SQuAD2.0の機械翻訳であるSQuAD-TRを提案する。
論文 参考訳(メタデータ) (2024-01-07T22:11:36Z) - AfriQA: Cross-lingual Open-Retrieval Question Answering for African
Languages [18.689806554953236]
XOR QAシステムは、母国語の人々に仕えながら、他言語からの回答内容を検索する。
AfriQAはアフリカ言語に焦点を当てた最初の言語間QAデータセットです。
AfriQAには10言語にわたる12,000以上のXOR QAサンプルが含まれている。
論文 参考訳(メタデータ) (2023-05-11T15:34:53Z) - Open-Ended Medical Visual Question Answering Through Prefix Tuning of
Language Models [42.360431316298204]
我々は、VQAのオープン化に重点を置いており、近年の言語モデルの発展によって、VQAを生成タスクと見なされている。
医療画像を言語モデルに適切に伝達するために,抽出した視覚的特徴を学習可能なトークンの集合にマッピングするネットワークを開発する。
我々は、Slake、OVQA、PathVQAといった主要な医療用VQAベンチマークに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-03-10T15:17:22Z) - MaXM: Towards Multilingual Visual Question Answering [28.268881608141303]
我々は,データとモデリングの両面で,多言語視覚質問応答(mVQA)に対するスケーラブルなソリューションを提案する。
まず,従来の質問や回答を直接収集する手法よりも,人間のアノテーションの取り組みをはるかに少なくする,mVQAデータ生成のための翻訳ベースのフレームワークを提案する。
次に,Crossmodal-3600データセットの多言語キャプションに適用し,テスト専用VQAベンチマークであるMaXMを作成するための効率的なアノテーションプロトコルを開発する。
論文 参考訳(メタデータ) (2022-09-12T16:53:37Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Cross-Lingual GenQA: A Language-Agnostic Generative Question Answering
Approach for Open-Domain Question Answering [76.99585451345702]
オープン検索生成質問回答(GenQA)は、高品質で自然な回答を英語で提供することが証明されている。
我々は多言語環境に対するGenQAアプローチの最初の一般化について述べる。
論文 参考訳(メタデータ) (2021-10-14T04:36:29Z) - XOR QA: Cross-lingual Open-Retrieval Question Answering [75.20578121267411]
この作業は、言語横断的な設定に応答するオープン検索の質問を拡張します。
我々は,同じ回答を欠いた質問に基づいて,大規模なデータセットを構築した。
論文 参考訳(メタデータ) (2020-10-22T16:47:17Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQAデータセットには、公衆医療専門試験で認可された複数の選択質問が含まれている。
これらの質問は、現在のQAシステムにとって最も難しいものです。
知識抽出フレームワーク(MurKe)を用いた多段階推論を提案する。
市販の事前訓練モデルを完全に活用しようと努力しています。
論文 参考訳(メタデータ) (2020-08-06T02:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。