論文の概要: MediFact at MEDIQA-M3G 2024: Medical Question Answering in Dermatology with Multimodal Learning
- arxiv url: http://arxiv.org/abs/2405.01583v1
- Date: Sat, 27 Apr 2024 20:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 16:00:17.739586
- Title: MediFact at MEDIQA-M3G 2024: Medical Question Answering in Dermatology with Multimodal Learning
- Title(参考訳): MEDIQA-M3G 2024のメディファクト:マルチモーダルラーニングによる皮膚科における医学的質問
- Authors: Nadia Saeed,
- Abstract要約: 本稿では,オープンエンド医療質問応答(QA)のための弱教師付き学習アプローチを提案することによって,従来の手法の限界に対処する。
本システムは,VGG16-CNN-SVMモデルを用いて,利用可能なMEDIQA-M3G画像を利用する。
この研究は、医療QA研究を前進させ、臨床意思決定支援システムへの道を切り開き、最終的に医療提供を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The MEDIQA-M3G 2024 challenge necessitates novel solutions for Multilingual & Multimodal Medical Answer Generation in dermatology (wai Yim et al., 2024a). This paper addresses the limitations of traditional methods by proposing a weakly supervised learning approach for open-ended medical question-answering (QA). Our system leverages readily available MEDIQA-M3G images via a VGG16-CNN-SVM model, enabling multilingual (English, Chinese, Spanish) learning of informative skin condition representations. Using pre-trained QA models, we further bridge the gap between visual and textual information through multimodal fusion. This approach tackles complex, open-ended questions even without predefined answer choices. We empower the generation of comprehensive answers by feeding the ViT-CLIP model with multiple responses alongside images. This work advances medical QA research, paving the way for clinical decision support systems and ultimately improving healthcare delivery.
- Abstract(参考訳): MEDIQA-M3G 2024は、皮膚科における多言語・マルチモーダル医療回答生成のための新しいソリューションを必要とする(wai Yim et al , 2024a)。
本稿では,オープンエンド医療質問応答(QA)のための弱教師付き学習手法を提案することによって,従来の手法の限界に対処する。
本システムは,VGG16-CNN-SVMモデルを用いて,手軽に利用できるMEDIQA-M3G画像を利用する。
事前学習されたQAモデルを用いて、マルチモーダル融合により視覚情報とテキスト情報のギャップをさらに埋める。
このアプローチは、事前に定義された答えの選択がなくても、複雑でオープンな質問に取り組みます。
画像と並行して複数の応答でViT-CLIPモデルにフィードバックすることで、包括的回答の生成を促進する。
この研究は、医療QA研究を前進させ、臨床意思決定支援システムへの道を切り開き、最終的に医療提供を改善する。
関連論文リスト
- GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis [44.76975131560712]
胸部X線診断 (GEMeX) のための大規模, 接地可能, 説明可能な医療用VQAベンチマークを導入する。
マルチモーダルな説明可能性メカニズムは、質問対ごとに詳細な視覚的およびテキスト的説明を提供する。
4つの異なる質問タイプ、オープンエンド、クローズドエンド、シングルチョイス、マルチチョイスは、多様な臨床ニーズを反映している。
論文 参考訳(メタデータ) (2024-11-25T07:36:46Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM [48.16696073640864]
我々は,新しい包括的ビジュアル質問回答(VQA)ベンチマークであるOmniMedVQAを紹介する。
このベンチマークのすべての画像は、本物の医療シナリオから得られたものです。
既存のLVLMはこれらの医療用VQA問題に効果的に取り組むのに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T13:51:56Z) - MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English
Clinical Queries [16.101969130235055]
本稿では,Multimodal Medical Codemixed Question Summarization MMCQSデータセットを紹介する。
このデータセットは、ヒンディー語と英語の混成医療クエリと視覚支援を組み合わせたものだ。
データセット、コード、トレーニング済みのモデルを公開します。
論文 参考訳(メタデータ) (2024-01-03T07:58:25Z) - CLIPSyntel: CLIP and LLM Synergy for Multimodal Question Summarization
in Healthcare [16.033112094191395]
MMQS(Multimodal Medical Question Summarization)データセットを紹介する。
このデータセットは、医用クエリと視覚補助とを組み合わせ、患者のニーズに対するより豊かでニュアンスな理解を促進する。
また、医学的障害を識別し、関連するコンテキストを生成し、医療概念をフィルタリングし、視覚的に認識された要約を作成する4つのモジュールからなるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T03:02:05Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
医療領域に適応したマルチモーダル・数ショット学習者であるMed-Flamingoを提案する。
OpenFlamingo-9Bに基づいて、出版物や教科書からの医療画像テキストデータのペア化とインターリーブ化を継続する。
本研究は,医療用VQA(ジェネレーティブ医療用VQA)の最初の人間評価である。
論文 参考訳(メタデータ) (2023-07-27T20:36:02Z) - PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering [56.25766322554655]
MedVQA(Medicical Visual Question Answering)は、診断精度と医療提供を向上する重要な機会を提供する。
本稿では,事前学習した視覚エンコーダの視覚情報を大規模言語モデルに整列させることにより,医用視覚理解のための生成モデルを提案する。
PMC-VQAで提案されたモデルをトレーニングし、VQA-RAD、SLAKE、Image-Clef 2019など、複数の公開ベンチマークで微調整する。
論文 参考訳(メタデータ) (2023-05-17T17:50:16Z) - Multi-task Paired Masking with Alignment Modeling for Medical
Vision-Language Pre-training [55.56609500764344]
本稿では,マルチタスク・ペアド・マスキング・アライメント(MPMA)に基づく統合フレームワークを提案する。
また, メモリ拡張クロスモーダルフュージョン (MA-CMF) モジュールを導入し, 視覚情報を完全統合し, レポート再構築を支援する。
論文 参考訳(メタデータ) (2023-05-13T13:53:48Z) - LingYi: Medical Conversational Question Answering System based on
Multi-modal Knowledge Graphs [35.55690461944328]
本稿では,マルチモーダル知識グラフに基づくCQAシステム,すなわち「LingYi」を提案する。
本システムでは,医用トリアージ,コンサルテーション,画像・テキスト・ドラッグ・レコメンデーション,記録などの医療行為を自動で行う。
論文 参考訳(メタデータ) (2022-04-20T04:41:26Z) - What Disease does this Patient Have? A Large-scale Open Domain Question
Answering Dataset from Medical Exams [35.644831813174974]
専門医試験から収集した医療問題の解決を目的とした,最初のフリーフォームOpenQAデータセットであるMedQAを提示する。
英語、簡体字、中国語の3言語に対応しており、それぞれ12,723、34,251、14,123の質問がある。
論文 参考訳(メタデータ) (2020-09-28T05:07:51Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQAデータセットには、公衆医療専門試験で認可された複数の選択質問が含まれている。
これらの質問は、現在のQAシステムにとって最も難しいものです。
知識抽出フレームワーク(MurKe)を用いた多段階推論を提案する。
市販の事前訓練モデルを完全に活用しようと努力しています。
論文 参考訳(メタデータ) (2020-08-06T02:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。