Communicate to Learn at the Edge
- URL: http://arxiv.org/abs/2009.13269v1
- Date: Mon, 28 Sep 2020 12:33:31 GMT
- Title: Communicate to Learn at the Edge
- Authors: Deniz Gunduz, David Burth Kurka, Mikolaj Jankowski, Mohammad Mohammadi
Amiri, Emre Ozfatura, and Sreejith Sreekumar
- Abstract summary: Machine learning techniques can enable many new services and businesses, but also poses significant technical and research challenges.
Two factors that are critical for the success of ML algorithms are massive amounts of data and processing power, both of which are plentiful, yet highly distributed at the network edge.
In this paper, we argue for a joint communication and learning paradigm for both the training and inference stages of edge learning.
- Score: 21.673987528292773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bringing the success of modern machine learning (ML) techniques to mobile
devices can enable many new services and businesses, but also poses significant
technical and research challenges. Two factors that are critical for the
success of ML algorithms are massive amounts of data and processing power, both
of which are plentiful, yet highly distributed at the network edge. Moreover,
edge devices are connected through bandwidth- and power-limited wireless links
that suffer from noise, time-variations, and interference. Information and
coding theory have laid the foundations of reliable and efficient
communications in the presence of channel imperfections, whose application in
modern wireless networks have been a tremendous success. However, there is a
clear disconnect between the current coding and communication schemes, and the
ML algorithms deployed at the network edge. In this paper, we challenge the
current approach that treats these problems separately, and argue for a joint
communication and learning paradigm for both the training and inference stages
of edge learning.
Related papers
- Multiple Access in the Era of Distributed Computing and Edge Intelligence [23.65754442262314]
We first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of the network.
We then explore over-the-air (OTA) computing, which is considered to be an approach that provides fast and efficient computation of various functions.
The split in between machine learning (ML) and multiple access technologies is also reviewed, with an emphasis on federated learning, reinforcement learning, and the development of ML-based multiple access protocols.
arXiv Detail & Related papers (2024-02-26T11:04:04Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - In-Network Learning: Distributed Training and Inference in Networks [10.635097939284753]
We develop a learning algorithm and an architecture that make use of multiple data streams and processing units.
In particular, the analysis reveals how inference propagates and fuses across a network.
arXiv Detail & Related papers (2021-07-07T18:35:08Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
This article aims to provide a comprehensive survey on applications of Transfer Learning in wireless networks.
We first provide an overview of TL including formal definitions, classification, and various types of TL techniques.
We then discuss diverse TL approaches proposed to address emerging issues in wireless networks.
arXiv Detail & Related papers (2021-02-15T14:19:55Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
Distributed machine learning (DML) techniques have been increasingly applied to wireless communications.
The unique features of wireless systems, such as large scale, geographically dispersed deployment, user mobility, and massive amount of data, give rise to new challenges in the design of DML techniques.
This survey bridges the gap by providing a contemporary and comprehensive survey of DML techniques with a focus on wireless networks.
arXiv Detail & Related papers (2020-12-02T19:53:32Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.