Multiple Access in the Era of Distributed Computing and Edge Intelligence
- URL: http://arxiv.org/abs/2403.07903v1
- Date: Mon, 26 Feb 2024 11:04:04 GMT
- Title: Multiple Access in the Era of Distributed Computing and Edge Intelligence
- Authors: Nikos G. Evgenidis, Nikos A. Mitsiou, Vasiliki I. Koutsioumpa, Sotiris A. Tegos, Panagiotis D. Diamantoulakis, George K. Karagiannidis,
- Abstract summary: We first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of the network.
We then explore over-the-air (OTA) computing, which is considered to be an approach that provides fast and efficient computation of various functions.
The split in between machine learning (ML) and multiple access technologies is also reviewed, with an emphasis on federated learning, reinforcement learning, and the development of ML-based multiple access protocols.
- Score: 23.65754442262314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the latest research and innovations in fundamental next-generation multiple access (NGMA) techniques and the coexistence with other key technologies for the sixth generation (6G) of wireless networks. In more detail, we first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of the network, as well as network slicing. We then explore over-the-air (OTA) computing, which is considered to be an approach that provides fast and efficient computation of various functions. We also explore semantic communications, identified as an effective way to improve communication systems by focusing on the exchange of meaningful information, thus minimizing unnecessary data and increasing efficiency. The interrelationship between machine learning (ML) and multiple access technologies is also reviewed, with an emphasis on federated learning, federated distillation, split learning, reinforcement learning, and the development of ML-based multiple access protocols. Finally, the concept of digital twinning and its role in network management is discussed, highlighting how virtual replication of physical networks can lead to improvements in network efficiency and reliability.
Related papers
- Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
Federated Learning (FL) has recently become an effective approach for cyberattack detection systems.
FL can improve learning efficiency, reduce communication overheads and enhance privacy for cyberattack detection systems.
Challenges in implementation of FL in such systems include unavailability of labeled data and dissimilarity of data features in different IoT networks.
arXiv Detail & Related papers (2021-12-02T05:26:29Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - In-Network Learning: Distributed Training and Inference in Networks [10.635097939284753]
We develop a learning algorithm and an architecture that make use of multiple data streams and processing units.
In particular, the analysis reveals how inference propagates and fuses across a network.
arXiv Detail & Related papers (2021-07-07T18:35:08Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Communicate to Learn at the Edge [21.673987528292773]
Machine learning techniques can enable many new services and businesses, but also poses significant technical and research challenges.
Two factors that are critical for the success of ML algorithms are massive amounts of data and processing power, both of which are plentiful, yet highly distributed at the network edge.
In this paper, we argue for a joint communication and learning paradigm for both the training and inference stages of edge learning.
arXiv Detail & Related papers (2020-09-28T12:33:31Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
Federated learning has emerged as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data.
We advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers.
arXiv Detail & Related papers (2020-06-07T05:11:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.