Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification
- URL: http://arxiv.org/abs/2009.13289v1
- Date: Mon, 28 Sep 2020 13:01:28 GMT
- Title: Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification
- Authors: Xi-An Li, Lei Zhang, Li-Yan Wang, Jian Lu
- Abstract summary: The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40 datasets.
Results show it achieves state-of-the-art performance in shape classification tasks.
- Score: 35.88116404702807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the implication of point cloud is still challenging to achieve
the goal of classification or segmentation due to the irregular and sparse
structure of point cloud. As we have known, PointNet architecture as a
ground-breaking work for point cloud which can learn efficiently shape features
directly on unordered 3D point cloud and have achieved favorable performance.
However, this model fail to consider the fine-grained semantic information of
local structure for point cloud. Afterwards, many valuable works are proposed
to enhance the performance of PointNet by means of semantic features of local
patch for point cloud. In this paper, a multi-scale receptive fields graph
attention network (named after MRFGAT) for point cloud classification is
proposed. By focusing on the local fine features of point cloud and applying
multi attention modules based on channel affinity, the learned feature map for
our network can well capture the abundant features information of point cloud.
The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40
datasets, and results show it achieves state-of-the-art performance in shape
classification tasks.
Related papers
- CLIP-based Point Cloud Classification via Point Cloud to Image Translation [19.836264118079573]
Contrastive Vision-Language Pre-training (CLIP) based point cloud classification model i.e. PointCLIP has added a new direction in the point cloud classification research domain.
We propose a Pretrained Point Cloud to Image Translation Network (PPCITNet) that produces generalized colored images along with additional salient visual cues to the point cloud depth maps.
arXiv Detail & Related papers (2024-08-07T04:50:05Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - D-Net: Learning for Distinctive Point Clouds by Self-Attentive Point
Searching and Learnable Feature Fusion [48.57170130169045]
We propose D-Net to learn for distinctive point clouds based on a self-attentive point searching and a learnable feature fusion.
To generate a compact feature representation for each distinctive point set, a stacked self-gated convolution is proposed to extract the distinctive features.
The results show that the learned distinction distribution of a point cloud is highly consistent with objects of the same class and different from objects of other classes.
arXiv Detail & Related papers (2023-05-10T02:19:00Z) - Shrinking unit: a Graph Convolution-Based Unit for CNN-like 3D Point
Cloud Feature Extractors [0.0]
We argue that a lack of inspiration from the image domain might be the primary cause of such a gap.
We propose a graph convolution-based unit, dubbed Shrinking unit, that can be stacked vertically and horizontally for the design of CNN-like 3D point cloud feature extractors.
arXiv Detail & Related papers (2022-09-26T15:28:31Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
We propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud.
For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy)
arXiv Detail & Related papers (2022-01-20T15:04:12Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations [20.318695890515613]
We propose an autoencoder, TearingNet, which tackles the challenging task of representing point clouds using a fixed-length descriptor.
Our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively.
Experimentation shows the superiority of our proposal in terms of reconstructing point clouds as well as generating more topology-friendly representations than benchmarks.
arXiv Detail & Related papers (2020-06-17T22:42:43Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
We present a graph attention convolution neural network (GACNN) that can be directly applied to the classification of unstructured 3D point clouds obtained by airborne LiDAR.
Based on the proposed graph attention convolution module, we further design an end-to-end encoder-decoder network, named GACNN, to capture multiscale features of the point clouds.
Experiments on the ISPRS 3D labeling dataset show that the proposed model achieves a new state-of-the-art performance in terms of average F1 score (71.5%) and a satisfying overall accuracy (83.2%)
arXiv Detail & Related papers (2020-04-20T05:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.