TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations
- URL: http://arxiv.org/abs/2006.10187v4
- Date: Sat, 4 Sep 2021 18:02:55 GMT
- Title: TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations
- Authors: Jiahao Pang, Duanshun Li, Dong Tian
- Abstract summary: We propose an autoencoder, TearingNet, which tackles the challenging task of representing point clouds using a fixed-length descriptor.
Our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively.
Experimentation shows the superiority of our proposal in terms of reconstructing point clouds as well as generating more topology-friendly representations than benchmarks.
- Score: 20.318695890515613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology matters. Despite the recent success of point cloud processing with
geometric deep learning, it remains arduous to capture the complex topologies
of point cloud data with a learning model. Given a point cloud dataset
containing objects with various genera, or scenes with multiple objects, we
propose an autoencoder, TearingNet, which tackles the challenging task of
representing the point clouds using a fixed-length descriptor. Unlike existing
works directly deforming predefined primitives of genus zero (e.g., a 2D square
patch) to an object-level point cloud, our TearingNet is characterized by a
proposed Tearing network module and a Folding network module interacting with
each other iteratively. Particularly, the Tearing network module learns the
point cloud topology explicitly. By breaking the edges of a primitive graph, it
tears the graph into patches or with holes to emulate the topology of a target
point cloud, leading to faithful reconstructions. Experimentation shows the
superiority of our proposal in terms of reconstructing point clouds as well as
generating more topology-friendly representations than benchmarks.
Related papers
- Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
We devise a new 3d point cloud generation framework using a divide-and-conquer approach.
All patch generators are based on learnable priors, which aim to capture the information of geometry primitives.
Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation.
arXiv Detail & Related papers (2023-07-22T11:10:39Z) - Learning Neural Volumetric Field for Point Cloud Geometry Compression [13.691147541041804]
We propose to code the geometry of a given point cloud by learning a neural field.
We divide the entire space into small cubes and represent each non-empty cube by a neural network and an input latent code.
The network is shared among all the cubes in a single frame or multiple frames, to exploit the spatial and temporal redundancy.
arXiv Detail & Related papers (2022-12-11T19:55:24Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
We propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud.
For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy)
arXiv Detail & Related papers (2022-01-20T15:04:12Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification [35.88116404702807]
The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40 datasets.
Results show it achieves state-of-the-art performance in shape classification tasks.
arXiv Detail & Related papers (2020-09-28T13:01:28Z) - Self-Sampling for Neural Point Cloud Consolidation [83.31236364265403]
We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud.
We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network.
We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.
arXiv Detail & Related papers (2020-08-14T17:16:02Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.