Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D
U-Net
- URL: http://arxiv.org/abs/2009.13583v1
- Date: Mon, 28 Sep 2020 18:58:24 GMT
- Title: Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D
U-Net
- Authors: Chuanbo Wang, Ye Guo, Wei Chen, Zeyun Yu
- Abstract summary: This paper proposes a novel convolutional framework based on 3D U-Net to segment IVDs from MRI images.
We first localize the centers of intervertebral discs in each spine sample and then train the network based on the cropped small volumes centered at the localized intervertebral discs.
- Score: 12.619402990144922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intervertebral discs (IVDs), as small joints lying between adjacent
vertebrae, have played an important role in pressure buffering and tissue
protection. The fully-automatic localization and segmentation of IVDs have been
discussed in the literature for many years since they are crucial to spine
disease diagnosis and provide quantitative parameters in the treatment.
Traditionally hand-crafted features are derived based on image intensities and
shape priors to localize and segment IVDs. With the advance of deep learning,
various neural network models have gained great success in image analysis
including the recognition of intervertebral discs. Particularly, U-Net stands
out among other approaches due to its outstanding performance on biomedical
images with a relatively small set of training data. This paper proposes a
novel convolutional framework based on 3D U-Net to segment IVDs from
multi-modality MRI images. We first localize the centers of intervertebral
discs in each spine sample and then train the network based on the cropped
small volumes centered at the localized intervertebral discs. A detailed
comprehensive analysis of the results using various combinations of
multi-modalities is presented. Furthermore, experiments conducted on 2D and 3D
U-Nets with augmented and non-augmented datasets are demonstrated and compared
in terms of Dice coefficient and Hausdorff distance. Our method has proved to
be effective with a mean segmentation Dice coefficient of 89.0% and a standard
deviation of 1.4%.
Related papers
- Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques [0.0]
This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet.
Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 + 0.012)
The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques.
arXiv Detail & Related papers (2024-11-08T10:07:03Z) - Deep Multimodal Fusion of Data with Heterogeneous Dimensionality via
Projective Networks [4.933439602197885]
We propose a novel deep learning-based framework for the fusion of multimodal data with heterogeneous dimensionality (e.g., 3D+2D)
The framework was validated on the following tasks: segmentation of geographic atrophy (GA), a late-stage manifestation of age-related macular degeneration, and segmentation of retinal blood vessels (RBV) in multimodal retinal imaging.
Our results show that the proposed method outperforms the state-of-the-art monomodal methods on GA and RBV segmentation by up to 3.10% and 4.64% Dice, respectively.
arXiv Detail & Related papers (2024-02-02T11:03:33Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - Mutual Attention-based Hybrid Dimensional Network for Multimodal Imaging
Computer-aided Diagnosis [4.657804635843888]
We propose a novel mutual attention-based hybrid dimensional network for MultiModal 3D medical image classification (MMNet)
The hybrid dimensional network integrates 2D CNN with 3D convolution modules to generate deeper and more informative feature maps.
We further design a mutual attention framework in the network to build the region-wise consistency in similar stereoscopic regions of different image modalities.
arXiv Detail & Related papers (2022-01-24T02:31:25Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.