Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques
- URL: http://arxiv.org/abs/2411.05456v1
- Date: Fri, 08 Nov 2024 10:07:03 GMT
- Title: Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques
- Authors: Mohammad Imran Hossain, Muhammad Zain Amin, Daniel Tweneboah Anyimadu, Taofik Ahmed Suleiman,
- Abstract summary: This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet.
Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 + 0.012)
The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques.
- Score: 0.0
- License:
- Abstract: Automatic brain tissue segmentation from Magnetic Resonance Imaging (MRI) images is vital for accurate diagnosis and further analysis in medical imaging. Despite advancements in segmentation techniques, a comprehensive comparison between traditional statistical methods and modern deep learning approaches using pre-processing techniques like N4 Bias Field Correction and Anisotropic Diffusion remains underexplored. This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet, enhanced with these pre-processing techniques to segment brain tissues (white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)) on the Internet Brain Segmentation Repository (IBSR18) dataset. Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 +- 0.012), while the 2D nnU-Net model recorded the lowest mean Hausdorff Distance (5.005 +- 0.343 mm) and the lowest mean Absolute Volumetric Difference (3.695 +- 2.931 mm) across five unseen test samples. The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques. Our implemented code can be accessed via GitHub.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments:
Neighborhood Relationship Enhanced Fully Convolutional Network [6.597152960878372]
FilterNet is a novel fully convolutional network (FCN) that embeds edge-aware constraints for individual calf muscle compartment segmentations.
FCN was evaluated on 40 T1-weighted MR images of 10 healthy and 30 diseased subjects by 4-fold cross-validation.
arXiv Detail & Related papers (2020-06-21T22:53:58Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.