Cross-Task Representation Learning for Anatomical Landmark Detection
- URL: http://arxiv.org/abs/2009.13635v1
- Date: Mon, 28 Sep 2020 21:22:49 GMT
- Title: Cross-Task Representation Learning for Anatomical Landmark Detection
- Authors: Zeyu Fu, Jianbo Jiao, Michael Suttie, J. Alison Noble
- Abstract summary: We propose to regularize the knowledge transfer across source and target tasks through cross-task representation learning.
The proposed method is demonstrated for extracting facial anatomical landmarks which facilitate the diagnosis of fetal alcohol syndrome.
We present two approaches for the proposed representation learning by constraining either final or intermediate model features on the target model.
- Score: 20.079451546446712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there is an increasing demand for automatically detecting
anatomical landmarks which provide rich structural information to facilitate
subsequent medical image analysis. Current methods related to this task often
leverage the power of deep neural networks, while a major challenge in fine
tuning such models in medical applications arises from insufficient number of
labeled samples. To address this, we propose to regularize the knowledge
transfer across source and target tasks through cross-task representation
learning. The proposed method is demonstrated for extracting facial anatomical
landmarks which facilitate the diagnosis of fetal alcohol syndrome. The source
and target tasks in this work are face recognition and landmark detection,
respectively. The main idea of the proposed method is to retain the feature
representations of the source model on the target task data, and to leverage
them as an additional source of supervisory signals for regularizing the target
model learning, thereby improving its performance under limited training
samples. Concretely, we present two approaches for the proposed representation
learning by constraining either final or intermediate model features on the
target model. Experimental results on a clinical face image dataset demonstrate
that the proposed approach works well with few labeled data, and outperforms
other compared approaches.
Related papers
- Self-Contrastive Weakly Supervised Learning Framework for Prognostic Prediction Using Whole Slide Images [3.6330373579181927]
Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak.
We propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation.
Our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively.
arXiv Detail & Related papers (2024-05-24T06:45:36Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept.
We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
arXiv Detail & Related papers (2024-04-22T17:00:57Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
arXiv Detail & Related papers (2023-09-19T16:08:33Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies.
Anatomical landmark detection is important to detect the presence of FAS associated facial anomalies.
Current deep learning-based heatmap regression methods designed for facial landmark detection in natural images assume availability of large datasets.
We develop a new regularized transfer learning approach that exploits the knowledge of a network learned on large facial recognition datasets.
arXiv Detail & Related papers (2021-09-12T11:05:06Z) - Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark
Detection in Medical Images [15.7026400415269]
We propose a novel learning-to-learn framework for landmark detection.
Our proposed framework is general and shows the potential to improve the efficiency of anatomical landmark detection.
arXiv Detail & Related papers (2021-05-19T13:39:18Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
Recent attempts to alleviate the need for large annotated datasets have developed training strategies under the few-shot learning paradigm.
We propose a novel few-shot learning framework for semantic segmentation, where unlabeled images are also made available at each episode.
We show that including unlabeled surrogate tasks in the episodic training leads to more powerful feature representations.
arXiv Detail & Related papers (2020-03-18T20:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.