Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI
- URL: http://arxiv.org/abs/2309.10725v1
- Date: Tue, 19 Sep 2023 16:08:33 GMT
- Title: Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI
- Authors: Gianluca Carloni, Eva Pachetti, Sara Colantonio
- Abstract summary: We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
- Score: 1.049712834719005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel method to automatically classify medical
images that learns and leverages weak causal signals in the image. Our
framework consists of a convolutional neural network backbone and a
causality-extractor module that extracts cause-effect relationships between
feature maps that can inform the model on the appearance of a feature in one
place of the image, given the presence of another feature within some other
place of the image. To evaluate the effectiveness of our approach in low-data
scenarios, we train our causality-driven architecture in a One-shot learning
scheme, where we propose a new meta-learning procedure entailing meta-training
and meta-testing tasks that are designed using related classes but at different
levels of granularity. We conduct binary and multi-class classification
experiments on a publicly available dataset of prostate MRI images. To validate
the effectiveness of the proposed causality-driven module, we perform an
ablation study and conduct qualitative assessments using class activation maps
to highlight regions strongly influencing the network's decision-making
process. Our findings show that causal relationships among features play a
crucial role in enhancing the model's ability to discern relevant information
and yielding more reliable and interpretable predictions. This would make it a
promising approach for medical image classification tasks.
Related papers
- Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes.
The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks.
We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the level.
arXiv Detail & Related papers (2024-03-26T09:36:20Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes.
This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image.
Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene.
arXiv Detail & Related papers (2023-09-19T08:00:26Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.