Self-Contrastive Weakly Supervised Learning Framework for Prognostic Prediction Using Whole Slide Images
- URL: http://arxiv.org/abs/2405.15264v1
- Date: Fri, 24 May 2024 06:45:36 GMT
- Title: Self-Contrastive Weakly Supervised Learning Framework for Prognostic Prediction Using Whole Slide Images
- Authors: Saul Fuster, Farbod Khoraminia, Julio Silva-RodrĂguez, Umay Kiraz, Geert J. L. H. van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A. M. Janssen, Tahlita C. M. Zuiverloon, Kjersti Engan,
- Abstract summary: Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak.
We propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation.
Our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively.
- Score: 3.6330373579181927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction. Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak, and the model must anticipate future events that are not directly observable in the image. To address this challenge, we propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation, a contrastive learning module for feature extraction, and a nested multiple instance learning classification module. Our study explores the significance of various regions of interest within the histopathological slides and exploits diverse learning scenarios. The pipeline is initially validated on artificially generated data and a simpler diagnostic task. Transitioning to prognostic prediction, tasks become more challenging. Employing bladder cancer as use case, our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively.
Related papers
- Histopathology image embedding based on foundation models features aggregation for patient treatment response prediction [0.0]
We propose a novel methodology for predicting Diffuse Large B-Cell Lymphoma patients treatment response from Whole Slide Images.
Our method exploits several foundation models as feature extractors to obtain a local representation of the image corresponding to a small region of the tissue.
Our experimental study conducted on a dataset of 152 patients, shows the promising results of our methodology.
arXiv Detail & Related papers (2024-07-23T13:31:12Z) - Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
arXiv Detail & Related papers (2024-04-18T18:25:00Z) - WEEP: A method for spatial interpretation of weakly supervised CNN models in computational pathology [0.36096289461554343]
We propose a novel method, Wsi rEgion sElection aPproach (WEEP), for model interpretation.
We demonstrate WEEP on a binary classification task in the area of breast cancer computational pathology.
arXiv Detail & Related papers (2024-03-22T14:32:02Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - A Deep Reinforcement Learning Framework for Rapid Diagnosis of Whole
Slide Pathological Images [4.501311544043762]
We propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference.
We use neural network to construct the search model and decision model of reinforcement learning agent respectively.
Experimental results show that our proposed method can achieve fast inference and accurate prediction of whole slide images without any pixel-level annotations.
arXiv Detail & Related papers (2022-05-05T14:20:29Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.