A Comprehensive Survey of Machine Learning Applied to Radar Signal
Processing
- URL: http://arxiv.org/abs/2009.13702v1
- Date: Tue, 29 Sep 2020 00:30:52 GMT
- Title: A Comprehensive Survey of Machine Learning Applied to Radar Signal
Processing
- Authors: Ping Lang, Xiongjun Fu, Marco Martorella, Jian Dong, Rui Qin, Xianpeng
Meng and Min Xie
- Abstract summary: Modern radar systems have high requirements in terms of accuracy, robustness and real-time capability.
Traditional radar signal processing (RSP) methods have shown some limitations when meeting such requirements.
With the rapid development of machine learning (ML), especially deep learning, radar researchers have started integrating these new methods when solving RSP-related problems.
- Score: 7.758302353877527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern radar systems have high requirements in terms of accuracy, robustness
and real-time capability when operating on increasingly complex electromagnetic
environments. Traditional radar signal processing (RSP) methods have shown some
limitations when meeting such requirements, particularly in matters of target
classification. With the rapid development of machine learning (ML), especially
deep learning, radar researchers have started integrating these new methods
when solving RSP-related problems. This paper aims at helping researchers and
practitioners to better understand the application of ML techniques to
RSP-related problems by providing a comprehensive, structured and reasoned
literature overview of ML-based RSP techniques. This work is amply introduced
by providing general elements of ML-based RSP and by stating the motivations
behind them. The main applications of ML-based RSP are then analysed and
structured based on the application field. This paper then concludes with a
series of open questions and proposed research directions, in order to indicate
current gaps and potential future solutions and trends.
Related papers
- A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey [2.425630641479336]
This paper outlines the application of machine learning techniques in short-reach communications.
We introduce a novel taxonomy for time-series methods employed in machine learning signal processing.
We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems.
arXiv Detail & Related papers (2024-05-02T16:04:30Z) - Flexible Payload Configuration for Satellites using Machine Learning [33.269035910233704]
Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse.
Recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies.
This paper presents a machine learning (ML)-based approach to Radio Resource Management (RRM)
arXiv Detail & Related papers (2023-10-18T13:45:17Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
We propose a simple-yet-effective attention-alike structural re- parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism.
In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training.
arXiv Detail & Related papers (2023-04-13T08:52:34Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's
Progressive Matrices [0.0]
We focus on the most common type of tasks -- the Raven's Progressive Matrices ( RPMs) -- and provide a review of the learning methods and deep neural models applied to solve RPMs.
We conclude the paper by demonstrating how real-world problems can benefit from the discoveries of RPM studies.
arXiv Detail & Related papers (2022-01-28T19:24:30Z) - Analytics and Machine Learning in Vehicle Routing Research [8.524039202121974]
Vehicle Problem Routing (VRP) is one of the most intensively studied optimisation problems.
To tackle the complexities, uncertainties and dynamics involved in real-world VRP applications, Machine Learning (ML) methods have been used.
This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems.
arXiv Detail & Related papers (2021-02-19T16:26:17Z) - A Comprehensive Survey of Machine Learning Based Localization with
Wireless Signals [42.89359907212791]
This paper provides a comprehensive survey of Machine Learning-based localization solutions that use RF signals.
A main point of the paper is the interaction between the domain knowledge arising from the physics of localization systems, and the various ML approaches.
A detailed discussion is dedicated to the different ML methods that have been applied to localization problems.
arXiv Detail & Related papers (2020-12-21T08:10:46Z) - Wireless for Machine Learning [91.13476340719087]
We give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support machine learning services over distributed datasets.
There are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML.
This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.
arXiv Detail & Related papers (2020-08-31T11:09:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.