Flexible Payload Configuration for Satellites using Machine Learning
- URL: http://arxiv.org/abs/2310.11966v1
- Date: Wed, 18 Oct 2023 13:45:17 GMT
- Title: Flexible Payload Configuration for Satellites using Machine Learning
- Authors: Marcele O. K. Mendonca, Flor G. Ortiz-Gomez, Jorge Querol, Eva
Lagunas, Juan A. V\'asquez Peralvo, Victor Monzon Baeza, Symeon Chatzinotas
and Bjorn Ottersten
- Abstract summary: Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse.
Recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies.
This paper presents a machine learning (ML)-based approach to Radio Resource Management (RRM)
- Score: 33.269035910233704
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Satellite communications, essential for modern connectivity, extend access to
maritime, aeronautical, and remote areas where terrestrial networks are
unfeasible. Current GEO systems distribute power and bandwidth uniformly across
beams using multi-beam footprints with fractional frequency reuse. However,
recent research reveals the limitations of this approach in heterogeneous
traffic scenarios, leading to inefficiencies. To address this, this paper
presents a machine learning (ML)-based approach to Radio Resource Management
(RRM).
We treat the RRM task as a regression ML problem, integrating RRM objectives
and constraints into the loss function that the ML algorithm aims at
minimizing. Moreover, we introduce a context-aware ML metric that evaluates the
ML model's performance but also considers the impact of its resource allocation
decisions on the overall performance of the communication system.
Related papers
- Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) addresses the variable demands of modern networks with unprecedented efficiency and adaptability.
This paper proposes a novel Meta Deep Reinforcement Learning (Meta-DRL) strategy, inspired by Model-Agnostic Meta-Learning (MAML) to advance resource block and downlink power allocation in O-RAN.
arXiv Detail & Related papers (2024-09-30T23:04:30Z) - Load Balancing in Federated Learning [3.2999744336237384]
Federated Learning (FL) is a decentralized machine learning framework that enables learning from data distributed across multiple remote devices.
This paper proposes a load metric for scheduling policies based on the Age of Information.
We establish the optimal parameters of the Markov chain model and validate our approach through simulations.
arXiv Detail & Related papers (2024-08-01T00:56:36Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility [35.04722426910211]
Urban Air Mobility (UAM) expands vehicles from the ground to the near-ground space, envisioned as a revolution in transportation systems.
To overcome the challenge, federated learning (FL) and other collaborative learning have been proposed to enable resource-limited devices to conduct onboard deep learning (DL) collaboratively.
This paper explores reconfigurable intelligent surfaces (RIS) empowered distributed learning, taking account of topological attributes to facilitate the learning performance with convergence guarantee.
arXiv Detail & Related papers (2024-03-08T08:05:50Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Towards Intelligent Load Balancing in Data Centers [0.5505634045241288]
This paper proposes Aquarius to bridge the gap between machine learning and networking systems.
It demonstrates its ability of conducting both offline data analysis and online model deployment in realistic systems.
arXiv Detail & Related papers (2021-10-27T12:47:30Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.