A Comprehensive Survey of Machine Learning Based Localization with
Wireless Signals
- URL: http://arxiv.org/abs/2012.11171v1
- Date: Mon, 21 Dec 2020 08:10:46 GMT
- Title: A Comprehensive Survey of Machine Learning Based Localization with
Wireless Signals
- Authors: Daoud Burghal, Ashwin T. Ravi, Varun Rao, Abdullah A. Alghafis,
Andreas F. Molisch
- Abstract summary: This paper provides a comprehensive survey of Machine Learning-based localization solutions that use RF signals.
A main point of the paper is the interaction between the domain knowledge arising from the physics of localization systems, and the various ML approaches.
A detailed discussion is dedicated to the different ML methods that have been applied to localization problems.
- Score: 42.89359907212791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The last few decades have witnessed a growing interest in location-based
services. Using localization systems based on Radio Frequency (RF) signals has
proven its efficacy for both indoor and outdoor applications. However,
challenges remain with respect to both complexity and accuracy of such systems.
Machine Learning (ML) is one of the most promising methods for mitigating these
problems, as ML (especially deep learning) offers powerful practical
data-driven tools that can be integrated into localization systems. In this
paper, we provide a comprehensive survey of ML-based localization solutions
that use RF signals. The survey spans different aspects, ranging from the
system architectures, to the input features, the ML methods, and the datasets.
A main point of the paper is the interaction between the domain knowledge
arising from the physics of localization systems, and the various ML
approaches. Besides the ML methods, the utilized input features play a major
role in shaping the localization solution; we present a detailed discussion of
the different features and what could influence them, be it the underlying
wireless technology or standards or the preprocessing techniques. A detailed
discussion is dedicated to the different ML methods that have been applied to
localization problems, discussing the underlying problem and the solution
structure. Furthermore, we summarize the different ways the datasets were
acquired, and then list the publicly available ones. Overall, the survey
categorizes and partly summarizes insights from almost 400 papers in this
field.
This survey is self-contained, as we provide a concise review of the main ML
and wireless propagation concepts, which shall help the researchers in either
field navigate through the surveyed solutions, and suggested open problems.
Related papers
- A Survey of Machine Learning-based Physical-Layer Authentication in Wireless Communications [17.707450193500698]
Physical-Layer Authentication (PLA) is emerging as a promising complement due to its exploitation of unique properties in wireless environments.
This paper presents a comprehensive survey of characteristics and technologies that can be used in the ML-based PLA.
arXiv Detail & Related papers (2024-11-15T03:01:23Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Bridging the gap to real-world for network intrusion detection systems
with data-centric approach [1.4699455652461724]
This paper presents a systematic data-centric approach to address the current limitations of NIDS research.
It generates NIDS datasets composed of the most recent network traffic and attacks, with the labeling process integrated by design.
arXiv Detail & Related papers (2021-10-25T04:50:12Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
Distributed machine learning (DML) techniques have been increasingly applied to wireless communications.
The unique features of wireless systems, such as large scale, geographically dispersed deployment, user mobility, and massive amount of data, give rise to new challenges in the design of DML techniques.
This survey bridges the gap by providing a contemporary and comprehensive survey of DML techniques with a focus on wireless networks.
arXiv Detail & Related papers (2020-12-02T19:53:32Z) - A Comprehensive Survey of Machine Learning Applied to Radar Signal
Processing [7.758302353877527]
Modern radar systems have high requirements in terms of accuracy, robustness and real-time capability.
Traditional radar signal processing (RSP) methods have shown some limitations when meeting such requirements.
With the rapid development of machine learning (ML), especially deep learning, radar researchers have started integrating these new methods when solving RSP-related problems.
arXiv Detail & Related papers (2020-09-29T00:30:52Z) - Wireless for Machine Learning [91.13476340719087]
We give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support machine learning services over distributed datasets.
There are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML.
This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.
arXiv Detail & Related papers (2020-08-31T11:09:49Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.