Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder
- URL: http://arxiv.org/abs/2009.13878v2
- Date: Thu, 11 Feb 2021 09:18:13 GMT
- Title: Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder
- Authors: Navid Shervani-Tabar, Nicholas Zabaras
- Abstract summary: We develop a molecular generative model based on variational inference and graph theory in the small data regime.
The model's performance is evaluated by generating molecules with desired target properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in artificial intelligence have propelled the development of
innovative computational materials modeling and design techniques. Generative
deep learning models have been used for molecular representation, discovery,
and design. In this work, we assess the predictive capabilities of a molecular
generative model developed based on variational inference and graph theory in
the small data regime. Physical constraints that encourage energetically stable
molecules are proposed. The encoding network is based on the scattering
transform with adaptive spectral filters to allow for better generalization of
the model. The decoding network is a one-shot graph generative model that
conditions atom types on molecular topology. A Bayesian formalism is considered
to capture uncertainties in the predictive estimates of molecular properties.
The model's performance is evaluated by generating molecules with desired
target properties.
Related papers
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
We propose a novel deep generative model that incorporates a hierarchical structure into the probabilistic latent vectors.
We demonstrate that our model can design effective molecular latent vectors for molecular property prediction from some experiments by small datasets on physical properties and activity.
arXiv Detail & Related papers (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
Deep graph generative models treat molecule design as graph generation problems.
Existing models have many shortcomings, including poor interpretability and controllability toward desired molecular properties.
This paper proposes new methodologies for molecule generation with interpretable and deep controllable models.
arXiv Detail & Related papers (2022-02-28T08:35:56Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
We propose a dual-branched neural network for molecular property prediction based on message-passing framework.
Our model learns heterogeneous molecular features with different scales, which are trained flexibly according to each prediction target.
arXiv Detail & Related papers (2021-06-14T10:00:39Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
The goal of this study is to develop a general model capable of predicting the solubility of a broad range of organic molecules.
Using the largest currently available solubility dataset, we implement deep learning-based models to predict solubility from molecular structure.
We find that models using molecular descriptors achieve the best performance, with GNN models also achieving good performance.
arXiv Detail & Related papers (2021-05-26T15:54:54Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model.
We show improved results on several evaluation metrics on two commonly adopted datasets for molecule generation.
arXiv Detail & Related papers (2020-09-01T21:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.