Quantum mechanics of round magnetic electron lenses with Glaser and
power law models of $B(z)$
- URL: http://arxiv.org/abs/2009.13943v2
- Date: Tue, 12 Jan 2021 13:30:34 GMT
- Title: Quantum mechanics of round magnetic electron lenses with Glaser and
power law models of $B(z)$
- Authors: Sameen Ahmed Khan, Ramaswamy Jagannathan
- Abstract summary: Scalar theory of quantum electron beam optics, at the single-particle level, derived from the Dirac equation using a Foldy-Wouthuysen-like transformation technique is considered.
Round magnetic electron lenses with Glaser and power law models for the axial magnetic field $B(z)$ are studied.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalar theory of quantum electron beam optics, at the single-particle level,
derived from the Dirac equation using a Foldy-Wouthuysen-like transformation
technique is considered. Round magnetic electron lenses with Glaser and power
law models for the axial magnetic field $B(z)$ are studied. Paraxial quantum
propagator for the Glaser model lens is obtained in terms of the well known
fundamental solutions of its paraxial equation of motion. In the case of lenses
with the power law model for $B(z)$ the well known fundamental solutions of the
paraxial equations, obtained by solving the differential equation, are
constructed using the Peano-Baker series also. Quantum mechanics of aberrations
is discussed briefly. Role of quantum uncertainties in aberrations, and in the
nonlinear part of the equations of motion for a nonparaxial beam, is pointed
out. The main purpose of this article is to understand the quantum mechanics of
electron beam optics though the influence of quantum effects on the optics of
present-day electron beam devices might be negligible.
Related papers
- Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction [0.0]
Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray and electron-positron pairs.
This work will be useful as a first step towards quantum simulation of plasma physics scenarios.
arXiv Detail & Related papers (2024-11-26T15:27:00Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Quantum-quasiclassical analysis of center-of-mass nonseparability in
hydrogen atom stimulated by strong laser fields [0.0]
We have developed a scheme for treating the nonseparable quantum-classical dynamics of the 6D hydrogen atom in a strong laser pulse.
The Schr"odinger equation for the electron and the classical Hamilton equations for the CM variables are integrated simultaneously.
It is possible to detect the quantum dynamics of an electron by measuring the distribution of the CM kinetic energy.
arXiv Detail & Related papers (2022-11-07T14:13:19Z) - Exact quantum-mechanical equations for particle beams [91.3755431537592]
These equations present the exact generalizations of the well-known paraxial equations in optics.
Some basic properties of exact wave eigenfunctions of particle beams have been determined.
arXiv Detail & Related papers (2022-06-29T20:39:36Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Experimental demonstrations of coherence de Broglie waves using
sub-Poisson distributed coherent photon pairs [0.0]
A new interpretation of quantum mechanics has been developed for the wave nature of a photon, where determinacy in quantum correlations becomes an inherent property without the violation of quantum mechanics.
Here, we experimentally demonstrate a direct proof of the wave natures of quantum correlation for the so-called coherence de Broglie waves (CBWs) using sub-Poisson distributed coherent photon pairs.
arXiv Detail & Related papers (2021-07-21T15:13:12Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.